The Shape of Space
by Jeff Weeks

9
The Sphere

In a sequel to Flatland, an octagon by the name of Mr. Puncto
surveys some rather large triangles and finds that each has angles
which add up to slightly more than 180°! This discovery excites
Mr. Puncto, and, after double checking his data, he makes the
discovery public. Unfortunately neither the civil authorities nor
the scientific establishment share his excitement. They suspect he
is merely inventing excuses to explain some errors in his
measurements, and they dismiss him from his job. The true
explanation is that the Flatlanders are living not in a plane but on
a sphere, and on a sphere the angles of a triangle really do add up
to more than 180°, as we shall soon see. This incident and much
more is described in the book Sphereland by Dionys Burger. |
heartily recommend Sphereland to all readers of the present book
(just don't be put off by the rather dull summary of Flatland at

the beginning).
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Figure 9.1: On any sphere, the great circles are those circles
which are as big as possible. A great circle appears straight to a
Flatlander on the sphere. By contrast, any lesser circle appears to

bend to one side or the other.

A triangle drawn on a sphere is called a spherical triangle.
Each side of a spherical triangle is required to be a geodesic; that
is, it is required to be intrinsically straight in the sense that a
Flatlander on the sphere would perceive it as bending neither to
the left nor to the right. A side of a spherical triangle is thus an
arc of a so-called great circle (see Figure 9.1).

From now on we will measure all angles in radians, to facilitate
easier comparison of angles and areas (in a minute you'll see how
and why we want to do this). Recall that = radians = 180°,

m/2 radians = 90°, etc. Except when specified otherwise, we will
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henceforth assume that all spheres are unit spheres, i.e. they all

have radius one.

Exercise 9.1. For each spherical triangle in Figure 9.2 compute (1)
the sum of its angles in radians, and (2) its area. To compute the
areas, use the fact that the unit sphere has area 4n. For example,
the first triangle shown occupies 1/8 of the sphere, so its area is
(4n)/8 = n/2.

Find a formula relating a spherical triangle's angle-sum to its
area. This formula appeared in 1629 in the section "De la mesure
de la superfice des triangles et polygones sphericques, nouvellement
inventee Par Albert Girard”" of the book Invention nouvelle en
L'Algebre by Albert Girard.

You should try to find the formula before reading on, because

the following paragraphs give it away. o

Exercise 9.2. What is the area of a spherical triangle whose angles
in radians are /2, /3 and /4?7 What is the area of a spherical

triangle with angles of 61°, 62° and 63°? o

Even though there is no overwhelming need for a proof of the
formula you just discovered, | would like to include one anyhow
because it is so simple and elegant. (It is not, however, the sort
of thing you're likely to stumble onto on your own. | struggled for
hours without being able to prove the formula at all.)

First we have to know how to compute the area of a "double

lune”. A double lune is a region on a sphere bounded by two
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Figure 9.2: Some assorted spherical triangles. Three of the
triangles are "degenerate" in the sense that each has one or
more angles equal to m. The last triangle occupies an entire
hemisphere, and its three sides all lie on the same great circle.
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Figure 9.3: A double lune with angle a.

great circles, as shown in Figure 9.3. The largest the angle a can
ever be is 7, at which point the double lune fills up the entire
sphere. So if a is, say, m/3, then we reason that since /3 is 1/3
the greatest possible angle n, the double lune must fill up 1/3 the
area of the entire sphere, namely (1/3)(4n) = 4n/3. Using the same
reasoning, we get that the area of a double lune with angle a is
(a/m)(471) = 4a. You can check this formula for some special cases,
e.g. a =1/2 or a = .

Now we'll find a formula for the area of a spherical triangle with
angles a, B and ¥. First extend the sides of the triangle all the

way around the sphere to form three great circles, as shown in
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Figure 9.4: Extend the edges of the spherical triangle, and the
resulting great circles will form an "antipodal triangle” on the back
side of the sphere.

Figure 9.4. An "antipodal triangle", identical to the original, is
formed on the back side of the sphere. Figure 9.5 shows three
possible ways to shade in double lunes. These double lunes have
respective angles a, B and ¥, and therefore their areas are 4a, 4B
and 4%.

Now look what happens if we shade in all three double lunes
simultaneously (Figure 9.6). All parts of the sphere get shaded in
at least once, and the original and antipodal triangles each get

shaded in three times (once for each double lune). So.
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everything each triangle
was shaded was shaded
in once in two more
‘ times
area of area of area of area of area of
+ second + third = entire +2 | original +2 | antipoda
double double sphere triangle triangle

lune lune

4a + 4 + 4y = 4n +  2A +  2A

4(a * B * ¥) = 4(7 * A)
a*tBrty=a+A

(a *+B*¥) -7w=A

which is just what we wanted to prove! In words, this formula
says that the sum of the angles of a spherical triangle exceeds m by

an amount equal to the triangle's area.

Exercise 9.3. The formula (a*B*¥) - m = A applies only to triangles
on a sphere of radius one. How must you modify the formula to
apply to triangles on a sphere of radius two? What about radius
three? Write down a general formula for triangles on a sphere of

radius r. ©

Exercise 9.4. A society of Flatlanders lives on a sphere whose
radius is exactly 1000 meters. A farmer has a triangular field with
perfectly straight (i.e. geodesic) sides and angles which have been
carefully measured as 43.624°, 85.123° and 51.270°. What is the
area of the field? Don't forget to convert the angles to radians.
(Bonus Question: How accurately do you know the field's area?

That, plus or minus what percent?) o

)
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Look what happens when we shade in all three double

Figure 9.6:
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Figure 9.8: A piece of a sphere splits open when flattened.



THE SPHERE 147

enclosed by each triangle, and then apply the formula from
Exercise 9.3. Because you have to guess the areas of the
triangles, you will get only approximate, not exact, answers. The
radius of the Earth is roughly 6400 km.
1. The triangle formed by Providence, Newport and Westerly,
R.lI. These cities are roughly 50 km apart.
2. The triangle formed by Houston, El Paso and Amarillo, TX.
These cities are roughly 1000 km apart.
3. The triangle formed by Madras, India; Tokyo, Japan; and
Leningrad, USSR. These cities are roughly 7000 km apart.

a

We've now seen the first major way in which the geometry of a
sphere differs from the geometry of a plane. Namely, the sum of
the angles of a spherical triangle exceeds 7 by an amount
proportional to the triangle's area, whereas the sum of the angles
of a Euclidean (= flat) triangle equals 7 exactly (study Figure 9.7
for a proof of this last fact).

A piece of a sphere rips open when flattened onto a plane
(Figure 9.8). This shows that a circle on a sphere has a smaller
circumference and encloses less area than a circle of the same

radius in a plane. | should stress that the radius of a circle on a
sphere is measured along the sphere itself--the way a Flatlander
would measure it. Figure 9.9 shows that on a sphere a circle's
circumference can actually shrink, even though the circle's

(intrinsically measured) radius is still increasing.
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Figure 9.9: The circle's circumference first increases, but then
decreases once the circle is past the equator.

Exercise 9.7. (Review exercise) What other surface has the local
geometry of a sphere? Could Flatlanders living on this other

surface tell that they weren't on a sphere? o



