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Four Dimensional 
Intuition 

A LINE IS one-dimensional. A flat surface is two-
dimensional. Solid objects are three-dimen-
sional. But what is the fourth dimension? 

Sometimes people say that time is a fourth di-
mension. In the physics of Einstein's relativity, a four-di-
mensional geometry is used in which a three-dimensional 
space and a one-dimensional time coordinate are merged 
into a single four-dimensional continuum. But we don't 
want to talk about relativity and space-time. We only want 
to know if it makes sense to take one more step in the list of 
geometrical dimensions. 

For instance, in two dimensions, we have the familiar fig-
ures of the circle and the square. Their three-dimensional 
analogs are the sphere and the cube. Can we talk about a 
four-dimensional hypersphere or hypercube, and make 
sense? 

We can go from a single point up to a cube in three 
steps. In the first step, we take two points, 1 inch apart, and 
join them. We get a line interval, a one-dimensional figure. 
Next, we take two l-inch line intervals, parallel to each 
other, 1 inch apart. Connect each pair of end-points, and 
we get a l-inch square, a two-dimensional figure. Next, 
take two l-inch squares, parallel to each other. Say the first 
square is directly above the second, 1 inch away. Connect 
corresponding corners, and we get a l-inch cube. 

So, to get a l-inch hypercube, we must take two l-inch 
cubes, parallel to each other, 1 inch apart, and connect ver-
tices. In this way, we should get a l-inch hypercube, a four-
dimensional figure. 

The trouble is that we have to move in a new direction at 
each stage. The new direction has to be perpendicular to 
all the old directions. After we have moved back and forth, 
then right and left, and finally up and down, we have used 
up all the directions we have accessible to us. We are three-
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dimensional creatures, unable to escape from three-di-
mensional space into the fourth dimension. In fact, the 
idea of a fourth physical dimension may be a mere fantasy, 
a device for science fiction. The only argument for it is that 
we can conceive it; there is nothing illogical or inconsistent 
about our conception. 

We can figure out many of the properties that a four-di-
mensional hypercube would have, if one existed. We can 
count the number of edges, vertices, and faces it would 
have. Since it would be constructed by joining two cubes, 
each of which has 8 vertices, the hypercube must have 16 
vertices. It will have all the edges the two cubes have; it will 
also have new edges, one for each pair of vertices that have 
to be connected. This gives 12 + 12 + 8 = 32 edges. With 
a little more work, one can see that it will have 24 square 
faces, and 8 cubical hyperfaces. 

The table below shows the number of "parts" of the in-
terval, square, cube, and hypercube. It is a startling discov-
ery that the sum of the parts is always a power of three! 

Dim en- 0-Faces 1-Faces 2-Faces 3-Faces 4-Faces 
sion OBJECT (Vertices) (Edges) (Faces) 

0 Point 

Interval 2 

2 Square 4 4 

3 Cube 8 12 6 

4 Hypercube 16 32 24 8 

In a course on problem-solving for high-school teachers 
and education students, the gradual discovery of these 
facts about hypercubes takes a week or two. The fact that 
we can find out this much definite information about the 
hypercube seems to mean that it must exist in some sense. 

Of course, the hypercube is just a fiction in the sense of 
physical existence. When we ask how many vertices a hy-
percube has, we are asking, how many could it have, if there 
were such a thing. It's like the punch line of the oldjoke-
"If you had a brother, would he like herring?" The differ-
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ence is that the question about a nonexistent brother is a 
foolish question; the question about the vertices of a non-
existent cube is not so foolish, since it does have a definite 
answer. 

In fact, by using algebraic methods, defining a hyper-
cube by means of coordinates, we can answer (at least in 
principle) any question about the hypercube. At least, we 
can reduce it to algebra, just as ordinary analytic geometry 
reduces questions about two- or three-dimensional figures 
to algebra. Then, since algebra in four variables is not es-
sentially more difficult than in two or three, we can answer 
questions about hypercubes as easily as questions about 
squares or cubes. In this way, the hypercube serves as a 
good example of what we mean by mathematical existence. 
It is a fictitious or imaginary object, but there is no doubt 
about how many vertices, edges, faces, and hyperfaces it 
has! (or would have, if one prefers the conditional mode of 
speaking about it.) 

The objects of ordinary three- or two-dimensional ge-
ometry are also mathematical objects, which is to say, imag-
inary or fictitious; yet they are closer to physical reality, un-
like the hypercube which we cannot construct. 

The mathematical three-cube is an ideal object, but we 
can look at a wooden cube and use it to determine proper-
ties of the three-cube. The number of edges of the three-
cube is 12; so is the number of edges of a sugar cube 12. 
We can get a lot of information about two- and three-di-
mensional geometry by drawing pictures or building 
models and then inspecting our pictures or models. While 
it is possible to go wrong by misusing a picture or model, it 
is rather difficult to do so. It takes ingenuity to invent a sit-
uation where one could go wrong in this way. As a general 
rule, the use of pictures and models is helpful, even essen-
tial in understanding two- or three-dimensional geometry. 

Reasoning based on models and figures, either actual 
ones or mental images of them, would be called intuitive 
reasoning, as opposed to formal or rigorous reasoning. 

When it comes to four-dimensional geometry, it might 
seem that since we ourselves are mere three-dimensional 
creatures, we are excluded by nature from the possibility 
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of reasoning intuitively about four-dimensional objects. 
And yet, it is not so. Intuitive grasp of four-dimensional 
figures is not impossible. 

At Brown University Thomas Banchoff, a mathemati-
cian, and Charles Strauss, a computer scientist, have made 
computer-generated motion pictures of a hypercube mov-
ing in and out of our three-dimensional space. To under-
stand what they have done, imagine a flat, two-dimensional 
creature who lived at the surface of a pond and could see 
only other objects on the surface (not above or below). 
This flat fellow would be limited to two physical dimen-
sions, just as we are limited to three. He could become 
aware of three dimensional objects only by way of their 
two-dimensional intersections with his flat world. If a solid 
cube passes from the air into the water, he sees the cross-
sections that the cube makes with the surface as it enters 
the surface, passes through it, and finally leaves it. 

If the cube passed through repeatedly, at many different 
angles and directions, he would eventually have enough in-
formation about the cube to "understand" it even if he 
couldn't escape from his two-dimensional world. 

The Strauss-Banchoff movies show what we would see if 
a hypercube passed through our three-space, at one angle 
or another. We would see various more or less complex 
configurations of vertices and edges. It is one thing to de-
scribe what we would see by a mathematical formula. It is 
quite another to see a picture of it; and still better to see it 
in motion. When I saw the film presented by Banchoff and 
Strauss, I was impressed by their achievement,* and by the 
sheer visual pleasure of watching it. But I felt a bit disap-
pointed; I didn't gain any intuitive feeling for the hyper-
cube. 

A few days later, at the Brown University Computing 
Center, Strauss gave me a demonstration of the interactive 
graphic system which made it possible to produce such a 
film. The user sits at a control panel in front of a TV 
screen. Three knobs permit him to rotate a four-dimen-

* This film, incidentally, won Le Prix de Ia Recherche Fondamentale 
au Festival de Bruxelles, 1979. 
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sional figure on any pair of axes in four-space. As he does 
so, he sees on the screen the different three-dimensional 
figures which would meet our three-dimensional space as 
the four-dimensional figure rotates through it. 

Another manual control permits one to take this three-
dimensional slice and to turn it around at will in three-
space. Still another button permits one to enlarge or shrink 
the image; the effect is that the viewer seems to be flying 
away from the image, or else flying toward and actually 
into the image on the screen. (Some of the effects in Star 
Wars of flying through the battle-star were created in just 
this way, by computer graphics.) 

At the computing center, Strauss showed me how all 
these controls could be used to get various views of three-
dimensional projections of a hypercube. I watched, and 
tried my best to grasp what I was looking at. Then he stood 
up, and offered me the chair at the control. 

I tried turning the hypercube around, moving it away, 
bringing it up close, turning it around another way. Sud-
denly I could feel it! The hypercube had leaped into palpa-
ble reality, as I learned how to manipulate it, feeling in my 
fingertips the power to change what I saw and change it 
back again. The active control at the computer console 
created a union of kinesthetics and visual thinking which 
brought the hypercube up to the level of intuitive under-
standing. 

In this example, we can start with abstract or algebraic 
understanding alone. This can be used to design a com-
puter system which can simulate for the hypercube the 
kinds of experiences of handling, moving and seeing real 
cubes that give us our three-dimensional intuition. So four-
dimensional intuition is available, for those who want it or 
need it. 

The existence of this possibility opens up new prospects 
for research on mathematical intuition. Instead of working 
with children or with ethnographic or historical material, 
as we must do to study the genesis of elementary geometric 
intuition (the school of Piaget), one could work with 
adults, either trained mathematically or naive, and attempt 
to document by objective psychological tests the develop-
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ment of four-dimensional intuition, possibly sorting out 
the roles played by the visual (passive observation) and the 
kinesthetic (active manipulation.) With such study, our un-
derstanding of mathematical intuition should increase. 
There would be less of an excuse to use intuition as a catch-
all term to explain anything mysterious or problematical. 

Looking back at the epistemological question, one won-
ders whether there really ever was a difference in principle 
between four-dimensional and three-dimensional. We can 
develop the intuition to go with the four-dimensional 
imaginary object. Once that is done, it does not seem that 
much more imaginary than "real" things like plane curves 
and surfaces in space. These are all ideal objects which we 
are able to grasp both visually (intuitively) and logically. 

Further Readings. See Bibliography 
H. Freudenthal [1978]; J. Piaget, [1970, 71]; T. Banchoff and C. M. 

Strauss 
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