
4 Flat Vertex Folds

Although an origami folding generally produces a 3D object, such as the
ubiquitous crane, intermediate stages of the folding are often flat, that is, paral-
lel layers of paper squashed into a plane, as in Figure 4.1. In fact, flat origami as
an end-product is its own well-developed art form.

In this chapter, we examine some of the surprising regularities present in
flat origami, and then touch on the perhaps even more surprising technical
unknowns lurking in a problem as commonplace as folding a map.

4.1 Mountain and Valley Creases

When you fold a sheet of paper in half, you create a straight-line crease that
extends from one edge of the paper to an opposite edge. A crease snaps fibers in
the paper, which is why the crease imprint remains after the creasing pressure
is released, and why you cannot erase a crease completely by uncreasing – the
fibers remain broken. Origami creases need not in general extend from edge to
edge of the paper being folded. With some care, you can crease a line segment
in the interior of the paper, with neither endpoint at the paper edge.

Creases come in two varieties: those created by a mountain fold and those by
a valley fold, with natural meanings; see Figure 4.2. Traditionally, valley folds are
indicated in origami diagrams as dashed lines − − − − −, and mountain folds
by a dash-dot pattern, − · − · − · −. Because these patterns are easily confused
by the eye, we opt for the unconventional red for mountain and green for valley.
(Memory aide: red sunset hitting peaks, lush green valleys.) Whether a crease
represents a mountain or a valley fold depends on the point of view: From the
underside, a mountain fold becomes a valley fold, and vice versa.
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Figure 4.1. The standard origami crane, shown as a flat folding, before wings flap
into 3D.

Mountain fold Valley fold

Figure 4.2. Mountain and valley folds.

4.2 Single-Vertex Flat Folds

There is already a rich mathematical structure in one of the simplest flat origami
constructions: a flat folding containing a single vertex. A vertex in an origami
construction is any point not on the boundary of the paper at which two or more
creases meet. A simple example is the result of folding a sheet of paper in half
twice: once top-to-bottom, and then left-to-right, which produces a vertex at
which four creases meet; see Figure 4.3, in which the two sides of the paper are
colored different shades.

Box 4.1: Folding Creases

Folding a crease that goes straight through a vertex is as easy as folding a sheet
of paper in half. Folding a crease that stops at a vertex requires a somewhat
different technique. One method is to fold the crease lightly right through the
vertex, and then only firm up the crease (perhaps by pressing against a table)
for the desired half. The method I use myself is to first draw the crease on
the mountain side with a ruler. Then I hold the paper in the air and pinch at
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several spots along the crease between my thumb and forefinger, up to but not
through the vertex. Only once it has been precreased in this way do it set it on
a table and sharpen the crease, either by sliding my thumbnail along it, or –
better – pressing the edge of a ruler along the crease.

(a)

(b)
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x

Figure 4.3. Degree-4 vertex: (a) Mountain/Valley creases on lighter side of paper;
backside is darker. (b) Flat folding. The three valley creases become mountain creases
on the darker side.
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Figure 4.4. Degree-6 vertex: (a) crease pattern; (b) folding. Some sheets are shown
partially transparent.

More complicated examples can be made by terminating a crease at the
vertex, for example, as in Figures 4.4. and 4.5.

Exercise 4.1 (Practice) Four Mountain Creases. Create four mountain creases
meeting at a central vertex, as shown in Figure 4.6, as follows. Fold a piece of
paper in half, top to bottom. Now unfold completely, and fold it in half, left
to right so that the two perpendicular creases are both mountain creases (or
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(b)
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Figure 4.5. Degree-8 vertex: (a) crease pattern; (b) folding.

x

Figure 4.6. Four mountain creases meeting at vertex x. (Exercise 4.1)

valley creases from the opposite side). Open the paper again. Convince yourself
by manipulation that the paper cannot fold flat with just those four creases
mountain-folded and meeting at the central vertex x (as they do in Figure 4.3(b)).

Is there any pattern to the single-vertex flat foldings we’ve examined so far?
I encourage the reader to experiment with sheets of paper and formulate con-
jectures. Perhaps the first regularity to become apparent is that the number of
creases meeting at the vertex must be even in order for the pattern to fold flat:
4 in Figure 4.3, 6 in Figure 4.4, 8 in Figure 4.5. And if we consider the midpoint
of the single crease formed by folding the sheet in half, a special type of vertex
where two mountain folds meet along the same line (collinearly), then again
there must be an even number: 2.

Indeed this regularity holds universally:

Theorem 4.1 (Even Degree)

A vertex in a flat folding has even degree.
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x

Figure 4.7. The crease pattern of Figure 4.4(a) with different mountain/valley
folding labels.

In this case, degree has nothing to do with angular measure, but rather is the
technical term for the number of creases coming into (incident to) the vertex.
This theorem will turn out to be a consequence of a deeper regularity that we
will see in the next section. Exercise 4.1 shows there must be more here, because
there four creases would not fold flat. Another clue is the six-crease example in
Figure 4.7, where the creases follow the same lines as in Figure 4.4 but with a
different mountain/valley folding. Try as you might, you cannot fold this dia-
gram flat. There must be both some imbalance between mountain and valley
folds, and some near-balance. The regularity here is captured in a beautiful the-
orem named after the two people who first discovered it (independently of one
another) in the 1980s, Jun Maekawa and Jacques Justin.

4.3 The Maekawa-Justin Theorem

Theorem 4.2 (Maekawa-Justin)

If M mountain creases and V valley creases meet at a vertex of a flat folding,
then M and V differ by 2: either M = V + 2 or V = M + 2.

We check our examples so far (Table 4.1.), verifying that they do indeed satisfy
Theorem 4.2. We now prove Theorem 4.2.

Let’s start with a circular piece of paper (Figure 4.8(a)) so we are not distracted
by the corners, which are irrelevant to what happens in the neighborhood of the
single central vertex. Now we consider an arbitrary single-vertex flat folding of
the paper; our goal is to prove that M and V differ by 2. Lay the folding flat, as in
Figure 4.8(b). Now look at the side of the folded paper toward the vertex inside
to see a closed zig-zag path of circular arcs, as depicted in (c) of the figure. Each
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Table 4.1. The number of mountain and valley creases
(M and V respectively) in our examples, checking the
Maekawa-Justin theorem (Theorem 4.2).

Theorem 4.2
Figure M V M − V satisfied?

Figure 4.3 3 1 2 X
Figure 4.4 4 2 2 X
Figure 4.5 5 3 2 X
Figure 4.6 4 0 4 ×
Figure 4.7 3 3 0 ×
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Figure 4.8. The example of Figure 4.5 revisited: (a) Crease pattern on circular
paper. The eight creases are labeled c1, . . . ,c8. (b) Flat folding. (c) Expanded view look-
ing from folded boundary toward vertex. Sharp turns at creases are shown as circular
arcs to illustrate the nesting. Starting direction vector from p toward right.

arc is a piece of the circular boundary flattened between two creases, which,
viewed edge-on, appears as a straight segment. Select any point of the path not
directly at a crease, for example, point p in (c), and imagine walking toward
the right. Let’s view your direction of travel as a vector (see Chapter 1, Box 1.3,
on vectors). Then the start direction vector points at angle 0◦ in the standard
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coordinate system, in which angles are measured counterclockwise from the
positive x-axis, which points toward the right.

Each mountain fold you encounter in your walk rotates your direction vector
through +180◦ (+ meaning counterclockwise), and each valley fold rotates your
vector through −180◦ (− for clockwise). Although it is true that rotation by +180◦

and by −180◦ bring the vector to the same final heading – exactly opposite to the
heading before rotation – the intermediate headings are different. For mountain
turns, the headings point to the exterior of the folding; for valley turns, the
headings point to the inside of the construction.

Now, we know that by the time we return to the starting point p after travers-
ing the entire diagram in (c), we approach p from the left heading right, so again
the vector has direction 0◦, which is the same as 360◦. In other words, we must
twist a total of a full 360◦ by the time we return to start.

So we must have:

M · 180◦ + V · (−180◦) = 360◦

Dividing through by 180◦ leads to M − V = 2. Remembering that M and V are
two sides of the same coin, we know that flipping the paper over in Figure 4.8(a)
would interchange the roles of M and V , and we’d reach the conclusion that
V − M = 2. Combining both possibilities into one phrase: M and V differ by 2.
That is the exactly the claim of the theorem; so we have proved Theorem 4.2.

The Maekawa-Justin theorem easily implies the Even-Degree Theorem
(Theorem 4.1). Suppose M = V + 2. Then:

M + V = (V + 2)+ V = 2V + 2 = 2(V + 1)

and so the total number of creases M + V into a vertex x (as in Figure 4.8a,b)
is even. The same logic applies when starting with V = M + 2 and reaches the
same conclusion: M + V is even.

Most theorems have many proofs, often starting from different background
assumptions. An alternate proof of Theorem 4.2 using polygons is presented in
Box 4.2.

Box 4.2: Proof of Maekawa-Justin Theorem via Polygons

The following proof was found by Jan Siwanowicz when he was a high-school
student. The starting point of his proof is another theorem: The sum of the
internal angles at the n vertices of a polygon is (n−2)180◦. (This in turn follows
from the theorem that every polygon can be partitioned by diagonals between
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Figure 4.9. An 8-vertex polygon (b) corresponding to Figure 4.8(c), repeated as (a)
here, with 5 mountain vertices {c1,c2,c4,c6,c7} and 3 valley vertices {c3,c5,c8}.

its vertices into n − 2 triangles, so that the total internal angle is that of n − 2
triangles, each of which has angle sum 180◦.) The idea is to view the zig-zag
path in Figure 4.8(c) as a squashed polygon, as in Figure 4.9, which is closer
to how it looks with sharp creases. If we imagine compressing this polygon
completely flat, all the mountain vertices have an internal angle near 0◦, and
all the valley vertices have an internal angle near 360◦. So the total internal
angle sum after complete flattening is:

M · 0◦ + V · 360◦

and this must equal (n − 2)180◦, where n is the total number of vertices of the
polygon. In this construction, each vertex derives from a crease, so n = M +V .
Therefore:

V · 360◦ = (M + V )180◦

and dividing by 180◦ yields 2V = M + V or M − V = 0.

Exercise 4.2 (Practice) Maekawa-Justin Theorem. Exercise 4.1 argued that
four mountain creases lead to an unflattenable vertex. Add additional creases
to Figure 4.6 so that it can flatten, and verify the Maekawa-Justin Theorem
(Theorem 4.2) for your construction.

4.4 The Local Min Theorem

The pattern in Figure 4.10(a) shows that we still haven’t plumbed the depths of
single-vertex flat foldings fully. It satisfies the Maekawa-Justin Theorem (Theo-
rem 4.2) with M = 4 and V = 2, and therefore satisfies the Even-Degree Theorem
(Theorem 4.1) with degree 6. And yet, if you try to fold it flat, you will see it is
impossible. Why? The essence of the impediment is that a 40◦ pie-slice wedge
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Figure 4.10. (a) A crease pattern that cannot fold flat. (b) Attempting to fold the
40◦ wedge results in paper penetrating itself. Here we’ve restricted the folding to the
semicircle (a) to make the angular relationships clear.

delimited by two valley folds is surrounded by larger angles on either side – 70◦.
This forces paper to pass through itself, as depicted in (b) of the figure. When-
ever we have such a pattern of consecutive wedge angles: {large, small, large},
the folds delimiting the central wedge cannot both be valley, nor can both be
mountain: One must be mountain and the other valley. The central angle is
called a local min, because locally – that is, in its immediate neighborhood – it is
a minimum angle, smaller than its neighbors to either side. We can phrase this
condition in a theorem as follows:

Theorem 4.3 (Local Min)

In any flat folding, any wedge whose angle is a local min must be delimited by
one mountain and one valley fold.

Exercise 4.3 (Practice) Three Theorems Check. Check which of Theorems 4.1
(Even Degree), 4.2 (Maekawa-Justin), and 4.3 (Local Min) are satisfied by the
crease pattern in Figure 4.11.

The three regularities we’ve uncovered so far are what mathematicians call
necessary conditions: Every single-vertex flat folding necessarily satisfies them.
But they may or may not be sufficient conditions: conditions on the crease pat-
tern which, if satisfied, imply the diagram can be folded flat. Indeed our three
conditions, in pairs or even all three together, are not sufficient conditions. The
holy grail in mathematics is a set of necessary and sufficient conditions, which
then completely characterize the situation. For single-vertex flat folds, these are
embodied in the Kawasaki-Justin Theorem.
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Figure 4.11. A single-vertex crease pattern for checking. (Exercise 4.3)

4.5 The Kawasaki-Justin Theorem

The Local-Min Theorem (Theorem 4.3) indicates that the measures of the wedge
angles defined by the crease pattern are important. Let us call the wedge angles
around the vertex in sequential order, θ1,θ2, . . . ,θn. We know from the Even-
Degree Theorem (Theorem 4.1) that n is even, because an even number of
creases determine an even number of wedges. We also know that:

θ1 + θ2 +·· ·θn = 360◦

because the angles completely surround the vertex. The Kawasaki-Justin The-
orem claims that a simple condition on the angles, completely ignoring the
mountain-valley pattern, provides necessary and sufficient conditions for flat
foldability:

Theorem 4.4 (Kawasaki-Justin)

A set of an even number of creases meeting at a vertex folds flat if, and only if,
the alternating sum of the determined wedge angles is zero:

θ1 − θ2 + θ3 − θ4 +·· ·+ θn−1 − θn = 0◦

The term alternating sum means that every other term has opposite sign: The
odd terms θ1,θ3,θ5, . . . are added and the even terms θ2,θ4,θ6, . . . are subtracted.
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Figure 4.12. Illustration of Kawasaki-Justin Theorem 4.4: 31◦ + 41◦ + 108◦ = 39◦ +
58◦ + 83◦.

So the alternating-sum equation is equivalent to:

θ1 + θ3 + θ5 + . . . = θ2 + θ4 + θ6 + . . .

the sum of the odd-indexed angles equals the sum of the even-indexed angles.
The phrase “if, and only if,” is mathematician’s shorthand for claiming necessary
(“only if”) and sufficient (“if”) conditions.

Figure 4.12(a) shows a 6-crease example with six wedge angles:

31◦ + 39◦ + 41◦ + 58◦ + 108◦ + 83◦ = 360◦

Their alternating sum is indeed zero:

31◦ + 41◦ + 108◦ = 180◦ = 39◦ + 58◦ + 83◦

so
31◦ − 39◦ + 41◦ − 58◦ + 108◦ − 83◦ = 0◦

The flat folding guaranteed to exist by the theorem is shown in (b) of the figure.

Exercise 4.4 (Practice) Kawasaki Theorem Check. Check if Theorem 4.4 is
satisfied by the example used in Exercise 4.3, Figure 4.11.

The claim that Theorem 4.4 provides a complete characterization of flat fold-
ability is rather remarkable, because it says nothing explicitly about the pattern
of mountain and valley folds on which we’ve been concentrating! But because
its conditions are sufficient, the alternating angle sum must somehow imply
both the Maekawa-Justin Theorem (Theorem 4.2) and the Local-Min Theorem
(Theorem 4.3). Kawasaki’s theorem implies that there must exist a way to select
creases for mountain folds and other creases for valley folds to make those
theorems work out.
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The proof of necessity proceeds just as with the Maekawa-Justin argument,
analyzing the zig-zag circular paper boundary path, as in Figure 4.8(c) (p. 62).
Again we imagine walking around this path. But now rather than concern our-
selves with the gyrations of the direction vector of travel, we concentrate on how
far we travel, measuring “how far” not in terms of linear distance, but in terms
of angular travel as seen from the central vertex. Let’s use Figure 4.12(b) as an
example. Starting at the leftmost edge of the folding and traveling rightward on
the bottommost flap, we travel an arc of 108◦ with respect to the apex x. At the
mountain fold we reverse direction and travel an arc of 83◦ leftward, then reverse
again and travel 31◦ rightward, and so on. Whether we encounter a mountain
or a valley fold is irrelevant if we are just concerned with total angular travel.
By the time we return to the start point, the total travel must be 0◦. And so the
alternating sum must be zero, which means it is necessarily zero.

That the alternating sum condition is also sufficient for the pattern to be flat-
foldable is not as easy to see, and we will have to leave it as a claim that the
Kawasaki-Justin Theorem 4.4 completely characterizes single-vertex flat fold-
ability. Given any crease pattern incident to a single vertex, and a protractor,
you can tell in advance whether or not it may be folded flat. Moreover, in an
even less obvious manner, the Local-Min Theorem (Theorem 4.3) can be used
to determine a mountain/valley assignment for the creases that will fold it flat.
Indeed, there are in general many such assignments – eight for the pattern in
Figure 4.12(a). Thus, in some sense, single-vertex flat foldings are completely
understood.

Exercise 4.5 (Understanding) Kawasaki Revisited. Exercise 4.1 concluded that
the four creases of Figure 4.6 cannot fold flat. But Theorem 4.4 is satisfied:
90◦ − 90◦ + 90◦ − 90◦ = 0. So it should fold flat. Where is the contradiction?

4.6 Above & Beyond

4.6.1 Flat Foldability is Hard

Flat origami of any artistic interest includes more than one vertex. For exam-
ple, the elegant “oval tessellation” (Figure 4.13) designed by Robert Lang has
136 vertices. Each must, individually, satisfy all the theorems of this chapter,
but it is known that, in general, this does not suffice: There are diagrams with
every single-vertex crease pattern locally “legal,” but the whole pattern cannot
be folded flat. A complete characterization of which patterns of creases are flat
foldable has remained out of reach. Perhaps the first result of what has come
to be known as computational origami implies that it might remain forever
out of reach. Marshall Bern and Barry Hayes proved in the 1990s that deciding
whether a crease pattern (even with mountain/valley labels explicitly provided)
is flat foldable is NP-hard, a computational complexity classification that means:
at least as hard as the NP-complete problems, which we saw, in Chapter 1 (p. 21),
are “intractable.” Many mathematicians believe that any NP-complete problem
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(a) (b)

Figure 4.13. Robert Lang’s Oval Tessellation, 1999.

is not only impractically difficult to solve computationally, but also that it will
forever resist being captured in a concise set of necessary and sufficient con-
ditions (because these would likely lead to tractable computations). Without
the possibility of a complete mathematical classification, the artistic core of flat
origami is not at risk of being overrun by mechanization.

4.6.2 Map Folding Complexity

I close this chapter with an unsolved problem: deciding whether or not a map
crease pattern can be folded flat. Anyone who has struggled with correctly
refolding a map in a car will appreciate the practical difficulty of the task, but
the unsolved problem concerns its computational complexity: Essentially, is
it “tractable” (technically, achievable in polynomial time) or is it intractable
(NP-complete or worse)?

You might wonder why this question is not already settled by the Bern-Hayes
result I mentioned in the previous section. The answer is that map folding is
a very special case. The map is assumed to be rectangular, with the creases
forming a regular grid of squares, with each crease segment labeled mountain
or valley. The Bern-Hayes proof fails on this special case, leaving hope that this
specific problem is tractable.

By this point you are likely wondering: What could be so hard about folding
a map? I encourage you to try to fold the example in Figure 4.14, even with the
help of the illustrated solution. The freedom to tuck layers over/under/inside of
one another gives the problem a rich combinatorial structure that has resisted
understanding. Even to answer the map-folding question for 2 × n maps – two
grid squares high by n grid squares wide – remains unsolved:
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Figure 4.14. (a) A map-folding puzzle. (b) Solution, with several squares labeled
(lightly shaded labels are facing away from viewer).

Open Problem: Map Folding
Is there an efficient method (algorithm) for deciding
whether or not a given rectangular map can fold flat,
with each grid crease segment pre-marked as either a
mountain or a valley fold?
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Figure 4.15. Folding four stamps. (Exercise 4.6)
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Exercise 4.6 (Challenge) Stamp Folding. If you have a strip of four stamps,
labeled on their tops with the numbers 1, 2, 3, 4 as shown in Figure 4.15(a), how
many different permutations of 1234 can you achieve by folding the stamps
along their perforated connections into a stack? There are 4! = 24 different
permutations of 1234. Can all of them be achieved? The convention for count-
ing is that, after folding, orient the stack so that the 1-stamp (wherever it is) is
facing upward, and then read off the stamp numbers from the stack top to bot-
tom. For example, (b) in the figure shows a folding that achieves the permuta-
tion 4321.


