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Projective Geometry 

Renaissance painters created it to represent three-dimensional 

reality In two dimensions. Their invention finally transcended 

Euclidean geolnetlY and today fonns an integral part of physics 

In the house of mathematics there are 
many mansions and of these the 
most elegant is projective geometry. 

The beauty of its concepts, the logical 
perfection of its structure and its funda­
mental role in geometry recommend the 
subject to every student of mathematics. 

Projective geometry had its origins in 
the work of the Renaissance artists. 
Medieval painters had been content to 
express themselves in symbolic terms. 
They portrayed people and objects in a 
highly stylized manner, usually on a gold 
background, as if to emphasize that the 
subject of the painting, generally re­
ligious, had no connection with the real 
world. An excellent example, regarded 
by critics as the flower of medieval 
painting, is Simone Martini's "The An­
nunciation." With the Renaissance came 
not only a desire to paint realistically but 

by Morris Kline 

also a revival of the Greek doctrine that 
the essence of nature is mathematical 
law. Renaissance painters struggled for 
over a hundred years to find a mathe­
matical scheme which would enable 
them to depict the three-dimensional 
real world on a two-dimensional canvas. 
Since many of the Renaissance painters 
were architects and engineers as well as 
artists, they eventually succeeded in 
their objective. To see how well they 
succeeded one need only compare Leo­
nardo da Vinci's "Last Supper" with 
Martini's, "Annunciation" [see opposite 
page]. 

The key to three-dimensional repre­
sentation was found in what is known as 
the principle of projection and section. 
The Renaissance painter imagined that a 
ray of light proceeded from each point in 
the scene he was painting to one eye. 

This collection of converging lines he 
called a projection. He then imagined 
that his canvas was a glass screen inter­
posed between the scene and the eye. 
The collection of points where the lines 
of the projection intersected the glass 
screen was a "section." To achieve real­
ism the painter had to reproduce on can­
vas the section that appeared on the 
glass screen. 

Two woodcuts by the German painter 
Albrecht Diirer illustrate this principle 
of projection and section [see below]. 
In "The Designer of the Sitting Man" the 
artist is about to mark on a glass screen 
a point where one of the light rays from 
the scene to the artist's eye intersects the 
screen. The second woodcut, "The De­
signer of the Lute," shows the section 
marked out on the glass screen. 

Of course the section depends not only 

WOODCUTS by Albrecht Diirer illustrate the principle of projec. 
tion and section. In the first woodcut the artist is about to mark 

the point at which a light ray from the scene to his eye intersects 
a glass screen. In the second a scene is marked out on the screen. 
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upon where the artist stands but also 
where the glass screen is placed between 
the eye and the scene. But this just 
means that there can be many different 
portrayals of the same scene. What mat­
ters is that, when he has chosen his scene, 
his position and the position of the glass 
screen, the painter's task is to put on 
canvas precisely what the section con­
tains. Since the artist's canvas is not 
transparent and since the scenes he 
paints sometimes exist only in his imagi­
nation, the Renaissance artists had to 
derive theorems which would specify 
exactly how a scene would appear on the 
imaginary glass screen (the location, 
sizes and shapes of objects) so that it 
could be put on canvas. 

The theorems they deduced raised 
questions which proved to be momen­
tous for mathematics. Professional 
mathematicians took over the investiga­
tion of these questions and developed a 
geometry of great generality and power. 
Let us trace its development. 

Suppose that a square is viewed from a 
point somewhat to the side [Figure 

1J. On a glass screen interposed between 
the eye and the square, a section of its 
projection is not a square but some other 
quadrilateral. Thus square floor tiles, for 
instance, are not drawn square in a 
painting. A change in the position of 
the screen changes the shape of the 
section, but so long as the position of 
the viewer is kept fixed, the impression 
created by the section on the eye is the 
same. Likewise various sections of the 
projection of a circle viewed from a fixed 
position differ considerably-they may 
be more or less flattened ellipses-but the 
impression created by all these sections 
on the eye will still be that created by 
the original circle at that fixed position. 

To the intellectually curious mathe­
maticians this phenomenon raised a 
question: Should not the various sections 
presenting the same impression to the 
eye have some geometrical properties in 
common? For that matter, should not 
sections of an object viewed from differ­
ent positions also have some properties 
in common, since they all derive from 
the same object? In other words, the 
mathematicians were stimulated to seek 
geometrical properties common to all 
sections of the same projection and to 
sections of two different projections of a 
given scene. This problem is essentially 
the one that has been the chief concern 
of projective geometers in their develop­
ment of the subject. 

It is evident that, just as the shape of 
a square or a circle varies in different 

THE ANNUNCIATION by Simone Martini is an outstanding example of the flat, stylized 
painting of the medieval artists. The figures were symbolic and framed in a gold background. 

THE LAST SUPPER by Leonardo da Vinci utilized projective geometry to create the illu­
sion of three dimensions. Lines have been drawn on this reproduction to a point at infinity. 

DRAWING by da Vinci, made as a study for his painting "The Adoration of the Magi," shows 
how he painstakingly projected the geometry of the entire scene before he actually painted it. 
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sections of the same projection or in dif­
ferent projections of the figure, so also 
will the length of a line segment, the 
size of an angle or the size of an area. 
More than that, lines which are parallel 
in a physical scene are not parallel in a 
painting of it but meet in one point; see, 
for example, the lines of the ceiling 

Figure 1 (see text) 

o 

T 

Figure 2 

Figure 3 
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beams in da Vinci's "Last Supper." In 
other words, the study of properties 
common to the various sections of pro­
jections of an object does not seem to lie 
within the province of ordinary Eu­
clidean geometry. 

Yet some rather simple properties that 
do carry over from section to section can 
at once be discerned. For example, a 
straight line will remain a line (that is, it 
will not become a curve) in all sections 
of all projections of it; a triangle will 
remain a triangle; a quadrilateral will 
remain a quadrilateral. This is not only 
intuitively evident but easily proved by 
Euclidean geometry. However, the dis­
covery of these few fixed properties 
hardly elates the finder or adds ap­
preciably to the structure and power of 
mathematics. Much deeper insight was 
required to obtain significant properties 
common to different sections. 

The first man to supply such insight 
was Gerard Desargues, the self-edu­

cated architect and engineer who worked 
during the first half of the 17th century. 
Desargues's motivation was to help the 
artists; his interest in art even extended 
to writing a book on how to teach chil­
dren to sing well. He sought to combine 
the many theorems on perspective in a 
compact form, and he invented a special 
terminology which he thought would be 
more comprehensible than the usual lan­
guage of mathematics. 

His chief result, still known as De­
sargues's theorem and still fundamental 
in the subject of projective geometry, 
states a significant property common to 
two sections of the same projection of a 
triangle. Desargues considered the situa­
tion represented here by two different 
sections of the projection of a triangle 
from the pomt 0 [Figure 2]. The rela­
tionship of the two triangles is described 
by saying that they are perspective from 
the point O. Desargues then asserted 
that each pair of corresponding sides of 
these two triangles will meet in a point, 
and, most important, these three points 
will lie on one straight line. With refer­
ence to the figure, the assertion is that 
AB and A'B' meet in the point R; AC 

and A'C' meet in S; BC and B'C' meet 
in T; and that R, S and T lie on one 
straight line. While in the case stated 
here the two triangle sections are in dif­
ferent planes, Desargues's assertion holds 
even if triangles ABC and A'B'C' are in 
the same plane, e.g., the plane of this 
paper, though the proof of the theorem 
is different in the latter case. 

The reader may be troubled about the 
assertion in Desargues's theorem that 
each pair of corresponding sides of the 

two triangles must meet in a point. He 
may ask: What about a case in which 
the sides happen to be parallel? De­
sargues disposed of such cases by invok­
ing the mathematical convention that 
any set of parallel lines is to be regarded 
as having a point in common, which the 
student is often advised to think of as 
being at infinit�'-a bit of advice which 
essentially amounts to answering a ques­
tion by not answering it. However, 
whether or not one can visualize this 
point at infinity is immaterial. It is logi­
call:>' possible to agree that parallel lines 
are to be regarded as having a point in 
common, which pOint is to be distinct 
from the usual, finitely located points of 
the lines considered in Euclidean geome­
try. In addition, it is agreed in projective 
geometry that all the intersection points 
of the different sets of parallel lines in a 
given plane lie on one line, sometimes 
called the line at infinity. Hence even if 
each of the three pairs of corresponding 
sides of the triangles involved in De­
sargues's theorem should consist of paral­
lei lines, it would follow from our agree­
ments that the three points of intersec­
tion lie on one line, the line at infinity. 

These conventions or agreements not 
only are logically justifiable but also are 
recommended by the argument that 
projective geometry is concerned with 
problems which arise from the phenom­
enon of vision, and we never actually see 
parallel lines, as the familiar example of 
the apparently converging railroad tracks 
remind us. Indeed, the property of 
parallelism plays no role in projective 
geometry. 

At the age of 16 the precocious French 
mathematician and philosopher Blaise 
Pascal, a contemporary of Desargues, 
formulated another major theorem in 
projective geometry. Pascal asserted that 
if the opposite sides of any hexagon in­
scribed in a circle are prolonged, the 
three points at which the extended pairs 
of lines meet will lie on a straight line 
[Figure 3]. 

As stated, Pascal's theorem seems to 
have no bearing on the subject of projec­
tion and section. However, let us visual­
ize a projection of the figure involved in 
Pascal's theorem and then visualize a 
section of this projection [Figure 4]. The 
projection of the circle is a cone, and in 
general a section of this cone will not be 
a circle but an ellipse, a hyperbola, or a 
parabola-that is, one of the curves 
usually called a conic section. In any 
conic section the hexagon in the original 
circle will give rise to a corresponding 
hexagon. Now Pascal's theorem asserts 
that the pairs of opposite sides of the 
new hexagon will meet on one straight 
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o sargues's major work. In the meantime 
most of Desargues's and Pascal's discov­
eries had had to be remade independent­
ly by 19th-century geometers. 

Projective geometry was revived 
through a series of accidents and events 
almost as striking as those that had origi­
nally given rise to the subject. Gaspard 
Monge, the inventor of descriptive ge-

11::::=����.---l\-----::1'IP ometry, which uses projection and sec­
tion, gathered about him at the Ecole 
Poly technique a host of bright pupils, 
among them Sadi Carnot and Jean 
Poncelet. These men were greatly im­
pressed by Monge's geometry. Pure 
geometry had been eclipsed for almost 
200 years by the algebraic or analytic 
geometry of Descartes. They set out to 
show that purely geometric methods 
could accomplish more than Descartes's. 

Q 

Figure 4 

line which corresponds to the line de­
rived from the original figure. Thus the 
theorem states a property of a circle 
which continues to hold in any section of 
any projection of that circle. It is indeed 
a theorem of projective geometry. 

I t would be pleasant to relate that the 
theorems of Desargues and Pascal 

were immediately appreciated by their 
fellow mathematicians and that the po­
tentialities in their methods and ideas 
were eagerly seized upon and further de­
veloped. Actually this pleasure is denied 
us. Perhaps Desargues's novel termi­
nology bafRed mathematicians of his 
day, just as many people today are 
bafRed and repelled by the language of 
mathematics. At any rate, all of De­
sargues's colleagues except Rene Des­
cartes exhibited the usual reaction to 
radical ideas: they called Desargues 
crazy and dismissed projective geometry. 
Desargues himself became discouraged 
and returned to the practice of architec­
ture and engineering. Every printed 
copy of Desargues's book, originally pub­
lished in 1639, was lost. Pascal's work on 
conics and his other work on projective 
geometry, published in 1640, also were 
forgotten. Fortunately a pupil of De­
sargues, Philippe de la Hire, made a 
manuscript copy of Desargues's book. In 
the 19th century this copy was picked up 
by accident in a bookshop by the ge­
ometer Michel Chasles, and thereby the 
world learned the full extent of De-

It was Poncelet who revived projec­
tive geometry. As an officer in Napoleon's 
army during the invasion of Russia, he 
was captured and spent the year 1813-
14 in a Russian prison. There Poncelet 
reconstructed, without the aid of any 
books, all that he had learned from 
Monge and Carnot, and he then proceed­
ed to create new results in projective 
geometry. He was perhaps the first 
mathematician to appreciate fully that 
this subject was indeed a totally new 
branch of mathematics. After he had re­
opened the subject, a whole group of 
French and, later, German mathemati­
cians went on to develop it intensively. 

One of the foundations on which they 
built was a concept whose importance 
had not previously been appreciated. 
Consider a section of the projection of a 
line divided by four points [Figure 5]. 
Obviously the segments of the line in the 
section are not equal in length to those 
of the original line. One might venture 
that perhaps the ratio of two segments, 
say A'C' /B'C', would equal the cor­
responding ratio AC/BC. This conjec­
ture is· incorrect. But the surprising fact 
is that the ratio of the ratios, namely 
(A'C'/C'B')/(A'D'/D'B'), will equal 
(AC/CB)/(AD/DB). Thus this ratio 
of ratios, or cross ratio as it is called, is a 
projective invariant. It is necessary to 

. note only that the lengths involved must 
be directed lengths; that is, if the direc­
tion from A to D is positive, then the 
length AD is positive but the length DB 

must be taken as negative. 
The fact that any line intersecting the 

four lines OA, OB, OC and OD contains 
segments possessing the same cross ratio 
as the original segments suggests that 
we assign to the four projection lines 
meeting in the point 0 a particular cross 
ratio, namely the cross ratio of the seg­
ments on any section. Moreover, the 
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cross ratio of the four lines is a projective 
invariant, that is, if a projection of these 
four lines is formed and a section made 
of this projection, the section will con­
tain four concurrent lines whose cross 
ratio is the same as that of the original 
four [Figu1"e 6]. Here in the section 
0' A'B'C'D', formed in the projection of 
the figure OABCD from the point 0", 
the four lines O'A', O'B', O'C' and O'D' 
have the same cross ratio as OA, OB, 
OC and OD. 

The projective in variance of cross ratio 
was put to extensive use by the 19th­

century geometers. We noted earlier in 
connection with Pascal's theorem that 
under projection and section a circle may 
become an ellipse, a hyperbola or a pa­
rabola, that is, any one of the conic sec­
tions. The geometers sought some com­
mon property which would account for 
the fact that a conic section always gave 
rise to a conic section, and they found 
the answer in telms of cross ratio. Given 
the points 0, A, B, C, D, and a sixth 
point P on a conic section containing the 
others [Figure 7], then a remarkable 
theorem of projective geometry states 
that the lines P A, PB, PC and PD have 
the same cross ratio as OA, OB, OC and 
OD. Conversely, if P is any point such 
that PA, PB, PC, and PD have the same 

A 
b c 

d 
B a 

C 

D 

p 

Figure 8 
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Figure 6 

cross ratio as OA, OB, OC and OD, then 
P must lie on the conic through 0, A, B, 
C and D. The essential point of this 
theorem and its converse is that a conic 
section is detelmined by the property of 
cross ratio. This new characterization 
of a conic was most welcome, not only 
because it utilized a projective property 
but also because it opened up a whole 
new line of investigation on the theory 
of conics. 

The satisfying accomplishments of 
projective geometry were capped by the 
discovery of one of the most beautiful 
principles of all mathematics-the prin­
ciple of duality. It is true in projective 
geometry, as in Euclidean geometry, 
that any two points determine one line, 
or as we prefer to put it, any two points 
lie on one line. But it is also true in pro­
jective geometry that any two lines de­
termine, or lie on, one point. (The reader 
who has refused to accept the convention 
that parallel lines in Euclid's sense are 
also to be regarded as having a point in 
common will have to forego the next few 
paragraphs and pay for his stubborn­
ness.) It will be noted that the second 
statement can be obtained from the first 
merely by interchanging the words point 
and line. We say in projective geomeb'y 
that we have dualized the original state­
ment. Thus we can speak not only of a 

A B 

0 C 

Figure 9 

Figure'i 

set of points on a line but also of a set of 
lines on a point [Figure 8]. Likewise the 
dual of the figure consisting of four 
points no three of which lie on the same 
line is a figure of four lines no three of 
which lie on the same point [Figure 9]. 

Let us attempt this rephrasing for a 
slightly more complicated figure. A 
triangle consists of three points not all on 
the same line and the lines joining these 
points. The dual statement would read: 
three lines not all on the same point and 
the points joining them (that is, the 
points in which the lines intersect). The 
figure we get by rephrasing the defini­
tion of a triangle is again a triangle, and 
so the triangle is called self -d ual. 

Now let us rephrase Desargues's 
theorem in dual terms, using the fact 
that the dual of a triangle is a triangle 
and assuming in this case that the two 
triangles and the point 0 lie in one 
plane. The theorem says: 

"If we have two triangles such that 
lines joining corresponding vertices pass 
through one point 0, then the pairs of 
corresponding sides of the two triangles 
join in three points lying on one straight 
line." 

Its dual reads: 
"If we have two triangles such that 

pOints which are the joins of correspond­
ing sides lie on one line 0, then the pairs 

Figure 10 
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section in a plane parallel to the rec­
tangle [Fig UTe 13]. The section is a rec­
tangle similar to the original one. If now 
the point 0 moves off indefinitely far to 
the left, the lines of the projection come 
closer and closer to parallelism with each 
other. When these lines become parallel 
and the center of the projection is the 
"point at infinity," the rectangles become 
not merely similar but congruent [Figure 
14]. In other words, from the standpoint 
of projective geometry the relationships 
of congruence and similarity, which are 
so intensively studied in Euclidean 
geometry, can be studied through pro­
jection and section for special projec­
tions. 

If projective geometry is indeed logical-
ly fundamental to Euclidean geome­

try, then all the concepts of the latter 
geometry should be defined in terms of 
projective concepts. However, in pro­
jective geometry as described so far 
there is a logical blemish: our definition 
of cross ratio, and hence concepts based 
on cross ratio, rely on the notion of 
length, which should play no role in 
projective geometry proper because 
length is not an invariant under arbi­
trary projection and section. The 19th­
centmy geometer Felix Klein removed 
this blemish. He showed how to define 
length as well as the size of angles en­
tirely in terms of projective concepts. 
Hence it became possible to affirm that 
projective geometry was indeed logically 
prior to Euclidean geometry and that the 
latter could be built up as a special case. 
Both Klein and Arthur Cayley even 
showed that the basic non-Euclidean 
geometries could be derived as special 
cases of projective geometry. No wonder 
that Cayley exclaimed: "Projective ge­
ometry is all geometry!" 

It remained only to deduce the theo­
rems of Euclidean and non-Euclidean 
geometry from axioms of projective 
geometry, and this geometers succeeded 
in doing in the late 19th and early 20th 
centuries. What Euclid did to organize 
the work of three hundred years pre­
ceding his time, the projective geometers 
did recently for the investigations which 
Desargues and Pascal initiated. 

A 
�B 

o 
D' 
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C 

Figure 13 

Research in projective geometry is 
now less active. Geometers are seeking 
to find simpler axioms and more elegant 
proofs. Some research is concerned with 
projective geometry in n-dimensional 
space. A vast new allied field is projec­
tive differential geometry, concerned 
with local or infinitesimal properties of 
curves and surfaces. 

Projective geometry has had an im­
portant bearing on current mathematical 
research in several other fields. Projec­
tion and section amount to what is called 
in mathematics a transformation, and it 
seeks invariants under this transforma­
tion. Mathematicians asked: Are there 
other transformations more general than 
projection and section whose invariants 
might be studied? In recent times one 
new geometry has been developed by 
pursuing this line of thought, namely, 
topology. It would take us too far afield 
to consider topological transformations. 
It must suffice here to state that topology 
considers transformations more general 
than projection and section and that it 
is now clear that topology is logically 
prior to projective geometry. Cayley was 
too hasty in affirming that projective 
geometry is all geometry. 

The work of the projective geometers 
has had an important influence on mod­
ern physical science. They prepared the 
way for the workers in the theory of 
relativity, who sought laws of the uni­
verse that were invariant under trans­
formation from the coordinate system of 
one observer to that of another. It was 
the projective geometers and other 
mathematicians who invented the calcu­
lus of tensors, which proved to be the 
most convenient means for expressing 
invariant scientific laws. 

It is of course true that the algebra of 
differential equations and some other 
branches of mathematics have contrib­
uted more to the advancement of science 
than has projective geometry. But no 
branch of mathematics competes with 
projective geometry in originality of 
ideas, coordination of intuition in dis­
covery and rigor in proof, purity of 
thought, logical finish, elegance of proofs 
and comprehensiveness of concepts. The 
science born of art proved to be an art. 

A' A 

c' c 

Figure 14 
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