The Mentality of the Mathematician.

A Characterization

The following is the text of an invited address delivered by
Max Dehn to the faculty and students of the University at
Frankfurt am Main, Germany, on January 18, 1928. The
date is that of the foundation of the German Reich in 1871.
The address was published by Universitaetsdruckerei
Werner & Winter, Frankfurt a. Main, in 1928 as No. 28 of
a series called Frankfurter Universitaetsreden.

When I was asked to prepare a public address to the
University for this solemn occasion, I thought imme-
diately of the topic that I intend to deal with today.
After all, in such a speech one usually discusses an
issue in one’s own discipline. However, purely math-
ematical topics are not suited for a general audi-
ence—the discipline of mathematics is virtually un-
affected by daily life and the concerns of the edu-
cated public. This is easily borne out just by a look at
audiences. In contrast to other specialties, it is
seldom—and then only in the early semesters—that a
mere admirer—in this case a nonmathematician—
strays into a mathematical lecture. Never before have I
addressed an audience like this, at least not in my
capacity as a mathematician. This is why I propose to
speak not about mathematics itself, but about and for
mathematicians. I shall try to bring the working
mathematician somewhat closer to you. However, this
cannot be done by giving examples of mathematicians
who were also excellent poets, painters, architects,
lawyers, statesmen, philosophers, or theologians.
Rather, I must bring before you the characteristics of a
mathematician when he works in his field.

Very frequently, the layman is ignorant of the most
characteristic quality of the creative mathematician—
his great productivity. In fact, the layman often thinks
that mathematics is by now a closed science, and gives
little thought to the origin of the discipline he is

* Translated by Abe Shenitzer. The translator wishes to thank Hardy
Grant for reading the translation and suggesting a number of im-
provements.
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familiar with from school. It is very likely that there is
just one theorem that he associates with a particular
scholar, namely the so-called theorem of Pythagoras. It
is possible that he knows the jocular saying that since
Pythagoras’ time the oxen low whenever someone
makes a great discovery, for Pythagoras so rejoiced at
his discovery that he offered a hecatomb. Of course,
the offering of a hundred animals is just a legend, but
it is reasonable to assume that, out of gratitude to the
gods, Pythagoras sacrificed oxen. And we think that it
is a justified belief that only divine inspiration can
give mathematical discoveries. That is why Eratos-
thenes and Perseus, in the manner of winners in an
Olympic competition, made votive offerings out of joy
at attaining their goals, their mathematical con-
structions—Eratosthenes with a historically signifi-
cant poem that has come down to us and is greatly
prized by philologists.

Unfortunately, the reports on ancient mathemati-
cians are full of gaps. We have better knowledge of
personalities only in the period after the middle of the
16th century. That is why the more recent times are
more fruitful for our purposes. A beautiful example of
a consciously experienced productive moment is the
discovery of analytic geometry by René Descartes on
November 10, 1619. Descartes tells us that one winter
during the Thirty Years’ War he was billetted in a
small town (near Ulm) in great loneliness and cold, *“in
the fireplace”, as he puts it. Then an illumination
came upon him that led him with astounding speed to
a multiplicity of geometric derivations. Beyond that,
the method he discovered that evening became one of
the most powerful impulses for the development of all
of modern mathematics.

At this point we shall go, for a moment, somewhat
deeper and emphasize a trait that is characteristic at
least for mathematical output. Descartes himself be-
lieved that, through an illumination, he had discov-
ered a new science—"cum mirabilis scientige fun-
damenta reperirem”’. But this was hardly the case. His
great contribution was not the discovery of a com-
pletely new idea—that of the unity of algebra and ge-
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ometry. It is even incorrect to say that he realized the
existing idea in a manner more daring than his pred-
ecessors. What is true is that the illumination came to
a man of surpassing algebraic talent that enabled him
to solve the most difficult particular problems and,
more importantly, to a thinker endowed with incom-
parable shaping power, who presented and applied
the idea—seized in a vision—with admirable sharp-
ness, clarity, and terseness, with almost rhetorical
brilliance. The historical significance of his contribu-
tion lies, above all, in formulation. It was this that
produced such fruitful effects on his contemporaries—
who, not surprisingly, had for the most part the
impression of something entirely new.

We find similar occurrences throughout the history
of mathematics. The origin of ideas is often unclear,
the roots reaching far back into time cannot be un-
ravelled. But the form is always the property of one
person, that which is truly individual, which happens
but once. And so, in my opinion, when evaluating a
contribution we should not attach decisive importance
to priority. The usually provisional finding that an
idea first turned up in the work of one or another
person is seldom very significant. Trains of thought
derived from economic life—for example, decisions
concerning patent claims—are not applicable to the
historical investigation of scientific development. On
the other hand, the most beautiful crown of laurels
should, of course, go to the man who first lifts an idea
out of its dark early stage to the bright clear light and
presents it completely—even if unfavourable cir-
cumstances deny him continued direct and fruitful in-
fluence.

Here it should be borne in mind that a natural ten-
dency tempts each of us into making exaggerated his-
torical evaluations. Yet these are somehow misplaced.
For the historian, the purest joy is to relish the con-
templation of the ups and downs of the development,
of the connections, of the breaks and transitions, to try
to see the divine spark in each of the creators and to
relive their productive moments.

Priority arguments were very frequent in the espe-




cially productive centuries—the 16th and 17th. In the
middle of the 16th century the Italian mathematicians
conducted bitter feuds over whose merit was greatest
in the rousing of algebra from its virtually uninter-
rupted thousand-year sleep. What was involved was,
in the first place, the magnificent discovery that cubic
equations can be solved by the extraction of roots.
This discovery was the first great step forward beyond
the results achieved by the mathematicians of an-

Very frequently, the layman is ignorant of the
most characteristic quality of the creative
mathematician—his great productivity.

tiquity. Thus its history is important; but unfortu-
nately this history is submerged in impenetrable
darkness. We know that the first discoverer, Scipione
del Ferro, died as professor in Bologna in 1526. Since
he published nothing, we are entirely ignorant of how
he hit upon his solution. Knowledge of such a solution
reached Tartaglia in a roundabout way; Tartaglia,
however, claimed to have discovered it on his own.
He communicated it to Cardano who published it—
against Tartaglia’s will—in his famous algebra book
Ars magna without having understood its derivation.

Geronimo Cardano, who died in 1576 at the age of
75, was a typical man of the Renaissance. In view of
our present topic—the creative power of the mathe-
matician—Cardano is of special interest to us. His
productivity was unbelievably extensive. Ninety
years after his death, ten large folios of his work ap-
peared, and the publisher assured readers that this

The usually provisional finding that an idea
first turned up in the work of one or another
person is seldom very significant.

was only half of what Cardano had written. There is
no area between heaven and earth that he left un-
treated. He wrote about all the natural sciences,
medicine, astrology, theology, philosophy and his-
tory. His autobiography—which Goethe compared to
Benvenuto Cellini’'s—has great charm. In it he de-
scribes with touching ingenuousness a life afflicted
with manifold misfortunes. At times we are strongly
reminded of Rousseau’s Confessions. Goethe writes at
length about Cardano in his history of the science of
color—about his talent, his passion, his wild and
confused state that always comes to the fore, and con-
cludes with these words:

Finally, we note that Cardano treated the sciences in a

more naive manner. He always considers them in con-
nection with himself, his personality, and his life. And so
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his works speak to us with a naturalness and liveliness
that attract, inspire, and refresh us, and set us into action.
He is not a professor in his gown lecturing us ex cathedra
but a man who goes this way and that, listens, is amazed,
is seized by joy and pain, and forces upon us a passionate
account of it all. If we rank him as superior among the
renewers of the sciences, then he reached this distinguished
position in equal measure through his character and his
efforts.

Cardano has probably had a greater effect on math-
ematics than on the other sciences, thanks to the Ars
magna, which was republished several times. His
character shows itself throughout the book—in the
exuberance with which he constructs hundreds of
types of equations he can handle, in flashes of genius,
such as the first tenuous connections between algebra
and the theory of entire rational functions and,
blended with this, in such confusion and nonsense as

For the historian, the purest joy is to relish the
contemplation of the ups and downs of the
development, of the connections, of the breaks
and transitions, to try to see the divine spark
in each of the creators and to relive their
productive moments.

we should hardly expect to find in the work of even
the mediocrities among his mathematical contem-
poraries. Cardano was brilliant but not discerning,
productive but lacking constructive power. He had an
astounding need to express himself. For example, he
published a thick volume on his utterly unsuccessful
attempts to treat a particularly difficult class of cubic
equations. His feuds with Tartaglia were fought out
by his student Ludovico Ferrari, who found the solu-
tion of quartic equations but who, strangely enough,
like Scipione del Ferro, published nothing about his
discovery.

Later priority arguments often involved national
jealousy. Thus in the middle of the 17th century the
French mathematicians wrangled with the Italians
whom they begrudged certain beautiful geometric
discoveries; and various French schools fought one

I believe that in the 17th and 18th centuries
there was hardly an educated layman who
had doubts about the fertility of mathematics.

another. Then there is the famous dispute over the
authorship of the infinitesimal calculus that raged at
the end of the 17th century between the followers of
Newton and Leibniz, between England and the Euro-
pean continent. It is hard to believe that as a result of
this fight, the English spurned Leibniz’s extremely
effective method of computation and for 150 years al-



most completely withdrew from the ranks of produc-
tive mathematicians.

The Marquis de L’Hospital, author of the first
textbook on the differential calculus (1696), was a par-
ticularly congenial representative of the continental
school. In the introduction, he expressed his en-
thusiasm for the new discipline in the following
beautiful passage.

Ordinary analysis treats only the finite magnitudes, but
the new analysis advances to the infinite itself. We could
even say that it extends beyond the infinite, for it discovers
the relationship of (infinitesimal) differences of infinitesimal
differences, as well as the differences of third and fourth
order, and so on, without ever reaching a limit that would
block its progress, and in this way encompasses not only the
infinite, but the infinite of the infinite, or an infinity of
infinite things.

I believe that in the 17th and 18th centuries there
was hardly an educated layman who had doubts about
the fertility of mathematics. But even today we wit-
ness the natural pleasure of producing that mathe-
matics affords precisely to the non-professional.
Young and old, students, and especially adults living
in relative isolation—country clergymen, small-town
teachers, foresters—busy themselves with famous an-
cient problems, such as the trisection of an angle, the
quadrature of a circle, the mysterious properties of
whole numbers. The latter are probably the oldest
playground of mathematics. Here a few results were

Gauss tells us that all his life he exploited the
ideas of his youth.

found in the distant past, and here, to this very day,
the most accomplished mathematicians battle to
achieve progress in problems that are as easy to state
as they are difficult to master.

Of course the creative power of the mathematician
is not always restricted to his discipline. We saw this
in Cardano’s case. In some cases—for example, Bern-
hard Riemann—it takes the form of metaphysical
speculations; in other cases it spurs revolutionary ac-
tivity. Thus Evariste Galois, the astounding 19th-
century mathematical genius, who conquered a new
realm of knowledge at 21 and then died in a ridiculous
duel, was very active in the “July revolution” and the
subsequent disturbances. Moreover the early matur-
ing of genius is characteristic of mathematicians and
connected with their productivity. Pascal in the 17th,
Clairaut in the 18th, and Abel in the 19th centuries are
particularly well-known examples. Gauss tells us that
all his life he exploited the ideas of his youth.

Another property of the mathematician that is
familiar to most laymen is the rigor he insists on in his
arguments. To be sure, extreme rigor has not always
characterized mathematics. In the preclassical period

of Greek mathematics speculation must have been
quite reckless; and when Greek mathematics declined,
its rigor gradually disappeared. And when—between
the end of the 16th and the beginning of the 17th
centuries—mathematics flourished once more, it was
the very lack of rigor that furthered its development.
Ignoring the canon of the great Greeks, the discoverers
surged ahead. (Naturally, some of the discoveries
were false!) Eventually, the intensification of rigor
began. At first it was restricted to a few isolated spots,
but it came very much to the fore in the 19th century,
and is not yet concluded today.

The Greeks owe the rigorous development of their
science to a discovery which, so to say, obliged to be
rigorous. They discovered the existence of irrational
ratios of segments; they realized that the side and
diagonal of a square have no common measure, that
is, there is no segment of which these two lengths are
whole multiples. In other words, they found ratios of
lengths that could not be expressed by common frac-
tions. Thus their earlier carefree practice—calculating
with ratios of segments as with ordinary fractions—
was an unconscious walk along the edge of a pre-
cipice. Why should the rules for computing with
whole numbers or fractions that admit of simple direct
derivation hold for irrational, ““inexpressible” ratios?
That 3-4 = 4-3 and, more generally, m'n = n'm, is
easy to perceive by looking at a table of four rows of
three points each, and so on. From this it is easy to
derive the result that the product of fractions does not
depend on the order of the factors. But why should this
hold for products of irrational ratios of segments that
cannot be obtained by the process of subdivision of a
whole number into equal parts? To overcome this
great difficulty the Greeks erected a remarkable
structure, contained in the fifth book of Euclid’s Ele-
ments, a structure whose stability we cannot fault to
this very day. The foundation stone of this structure—
as well as any other rigorous theory that proposes to
harmonize arithmetic and geometric phenomena—is
the following theorem, which we state in Archimedes’
formulation: Given two different magnitudes, or,
more specifically, segments, one can multiply their
difference so many times that it becomes greater than
any third given magnitude or segment. The Greeks,
most explicitly Archimedes, clearly recognized the
importance and uniqueness of this basic theorem (also
referred to as the exhaustion principle)—it does not
derive directly from intuition, and its transcendental
character becomes obvious upon closer examination—
and they took great pains to use it in their syllogisms.
They realized that without it they could not derive
their most beautiful results, such as the philosopher
Democritus’ insight that the volume of a pyramid is
one third of the volume of a parallelepiped with the
same base and height, or Archimedes’ splendid dis-
covery that the surface area of a sphere is four times
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the area of its equatorial cross section. And so they
included this basic theorem in their canon.

Almost all of the great discoverers of the 17th
century—in particular, Kepler, Cavalieri and Leibniz—
argued naively, much as the Greek mathematicians
had argued before the fall, that is, before they had
plucked the fateful fruit from the tree of knowledge
and tasted it. In the 18th century no one respected
Greek rigor. The new race of titans found the rigorous
rules of the ancients too particular and inhibiting.
One might say that productivity defeated strict pro-
priety. For modern mathematicians, the existence of
irrational numbers was not an intense personal ex-
perience. They knew them from their elementary ed-

Almost all of the great discoverers of the 17th
century—in particular, Kepler, Cavalieri and
Leibniz—argued naively, much as the Greek
mathematicians had argued before the fall,
that is, before they had plucked the fateful
fruit from the tree of knowledge and tasted it.

ucation, and so this knowledge could not bring them
to soul-searching. It was only at the end of the 18th
century that progress in the theory of functions re-
vealed more complicated phenomena that demonstrated
the consequences of recklessness. Thanks to a number
of mathematicians, Greek rigor gradually became re-
spectable again, especially in connection with attempts
to provide an independent logical basis for a part of
geometry that blossomed anew, namely, projective
geometry. And so it happened that in the first devel-
opment of projective geometry by the still living
Giessen mathematician Pasch, (a development rigor-
ous by today’s standards), we find once more the old
Greek basic theorem of exhaustion applied to seg-

While we must admit that mathematics has
not always met reasonable standards of rigor,
we must also concede that the layman is en-
tirely right when he thinks that mathematical
knowledge is more securely based than all
other knowledge.

ments. In some respects, Pasch’s development of
geometry—as far as it goes—is more rigorous than the
development of the corresponding parts of geometry
by the ancients, for Pasch decided to spell out all the
intuitive assumptions. To some extent, his system of
axioms is complete, whereas the Greeks used the
intuitively obvious freely and without acknowledge-
ment, and only spelled out ideas at the boundary of
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the intuitively given. Experience with irrational
number taught the Greeks that in mathematics one
must not rely uncritically on one’s feelings, that it is
dangerous to generalize formally, for connections in
the more general and non-intuitive take us back to
relations in the intuitive and the particular. The false
method of merely formal generalization has been used
repeatedly through the centuries. We come across it
even today in decisive places in many textbooks.

While we must admit that mathematics has not al-
ways met reasonable standards of rigor, we must also
concede that the layman is entirely right when he
thinks that mathematical knowledge is more securely
based than all other knowledge. By and large, results
remain true regardless of whether they were deduced
two thousand years ago or yesterday. Only isolated
general assertions, especially those in the most ad-
vanced or abstract parts of mathematics, or listings of
all possible cases of a certain phenomenon, must
sometimes be revised. The more particular the result,
the smaller the likelihood that it is false, or that its
incorrectness will not be immediately discovered.
Most results are so involved in the general web of
theorems, they can be reached in so many ways, that
their incorrectness is simply unthinkable. This is the
characteristic difference between mathematics and all
systems of knowledge that arose before it, or even all
compilations of knowledge that do not derive directly
from Greek thought.

Most mathematicians find is especially dif-
ficult to come to terms with the thought-
constructions of the philosophers.

This singular feature of his discipline must, of
course, influence the character of the mathematician.
If he is to be successful in his work the mathemati-
cian must be extremely scrupulous. Some carry over
the lessons learned in their discipline to other areas.
They demand absolute certainty in other areas of
knowledge and tend to look down upon them if they
do not find it. This attitude is quite common among
those who have just begun to devote themselves to
mathematical work. Most mathematicians find it es-
pecially difficult to come to terms with the thought-
constructions of the philosophers. The structure of
knowledge in these two disciplines is so different that
the mathematician arrives quickly at the conclusion
that the philosopher works exclusively with magic in-
cantations, while the philosopher thinks the mathe-
matician superficial and simplistic. Other mathe-
maticians use their acquired dialectical skill—their
experience in the construction of mutually exclusive
categories—to regard as possible completely para-
doxical solutions of problems in other sciences or in



daily life. In the latter case they fail to grasp the
differently-oriented logic of things social, of the life of
men with one another.

For example, involvement with mathematics was
dangerous for Descartes, and possibly for his effect
upon philosophy. His successes in geometry made
him somewhat presumptuous. He had the justified
feeling that he had achieved something truly great by
means of his penetrating reason. Blinded by this, he
believed that he could comprehend the whole world
by means of pure reason, that he could, so to say,
explain it mathematically. Descartes’ delusions may

Mathematics is the only instructional mate-
rial that can be presented in an entirely un-
dogmatic way.

well have had an unfortunate effect on the views of
subsequent philosophers.

There is no doubt that mathematics exerts a strong
influence on anyone who occupies himself with it—
that it shapes his character in a unique way. Mathe-
matics is the only instructional material that can be
presented in an entirely undogmatic way. That is why
instruction in mathematics has played a prominent
role in institutions of higher learning since antiquity.
Taught properly, mathematics enables the student to
think clearly and independently within the limits of
his aptitude. He can certainly take complete responsi-
bility for his mathematical work.

Goethe once said that mathematicians have no con-
science. He probably meant that they need no con-
science, for they build on a solid foundation and can-
not possibly be led into temptation. But he overesti-
mates mathematicians or mathematics. Very recently,
we have again seen that we too can stumble. The taste
for generalization, for ever more comprehensive con-
cepts, of which we spoke above, has made us con-
struct things that are very far removed from common
intuition, such as the general concepts of set theory set

Taught properly, mathematics enables the
student to think clearly and independently
within the limits of his aptitude.

up by Cantor around 1880. It turned out that, while it
is possible to obtain beautiful results in this new
realm of pure thought, these constructions lead to
contradictions—the so-called paradoxes of set theory
to which much attention is also being paid in the
philosophical literature. Much as in old Greece after
the discovery of the irrationals, or at the beginning of
the 19th century after the refinement of the infinitesi-

mal calculus, there has arisen a critical movement. I
shall try to describe—if only schematically—the re-
sults obtained so far by this criticism.

In the last third of the past century it was
thought—largely on the basis of the extraordinary
achievements of the Berlin mathematician Weiertrass—
that analysis had been given an independent and
unassailable foundation, and that all constructions
arise on this foundation from simpie logical argu-
ments. The Weierstrass school took little interest in
geometry, but at the time there appeared the book of
Pasch, that achieved for a large part of geometry the
same sort of justification that—largely through the
efforts of Weierstrass—had been achieved in analysis.
The present critique of Weierstrass’ viewpoint is the
following: (1) The natural foundation of analysis is
geometry. In fact, the analytic derivation of the
simplest concepts of analysis—for example, the proper
fractions—from the whole numbers is artificial. (2)
Arguments in analysis are not based on simple logic
alone. In fact, it is precisely in analysis that we re-
quire complete induction—inference from n to n +
1—for every theorem. The ancients did not formulate
this procedure; to some extent they used it uncon-
sciously. Actually, its flawless formulation occasions
great difficulties. One also used in analysis modes of
deduction that failed to be generally accepted after
they had been fully understood. Here I have in mind,
in the first instance, the so-called axiom of choice, first
clearly formulated by Zermelo in 1904. (3) In order to
attain the alleged absolute certainty it is necessary to
establish the incontrovertibility of the assumptions. In
fact, as we mentioned above, there are contradictions
in set theory that, unfortunately, have not been satis-
factorily resolved. Thus there is no doubt that it is
necessary to develop the foundations of analysis with
greater care. But even if this task is accomplished
satisfactorily, no modern mathematician will want to
claim that no contradictions will ever arise on this new
foundation. It was primarily Hilbert who clearly for-
mulated and tackled the problem of giving a direct
proof of consistency. A complete resolution of the
issue is very unlikely for a variety of reasons. I myself
think it may be that the reason for this difficult state of
affairs is that in the case of very general conceptual
constructs there arise contradictions between geom-
etry—the world of extensive magnitudes—and the
world of counting, and that analysis—the bridge
between the two—will surely remain completely free
of contradictions as long as it is intuitive, that is, as its
concepts are at the same time intuitive geometric con-
cepts. In this view, the true foundation of mathemat-
ics is not the object of pure thought in Plato’s beautiful
belief—the yontév that, in his view, must under no
circumstances be confused with perception the
atopno—but also the ordinary, if somewhat refined,
visualization that the creator of the realm of ideas was
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somewhat contemptuous of. Earlier, one regarded all
of the mathematics—the basic theorems and the mode
of reasoning—as logically necessary; mathematics was
unique. Since the beginning of the 19th century it has
become more and more apparent that different sys-
tems can be visualized, that, say, different types of
spaces are compatible with experience. This is not to
imply that the mathematician can now choose his as-

It seems that it is no longer possible to consis-
tently interpret physical phenomena in a
mathematical 4-dimensional space-time con-
tinuum.

sumptions at will. Not only is such arbitrariness likely
to result in developments without beauty, but it is also
likely to lead to contradictions that make all of the
work an illusion.

This somewhat skeptical attitude of some modern
mathematicians is reinforced by what is happening in
the neighboring area of physics. It seems that it is no
longer possible to consistently interpret physical
phenomena in a mathematical 4-dimensional space-
time continuum. Until now we have been able to
supply physics with somewhat loosely built scaffold-
ings for its ever bolder constructions. It may now be
about to emancipate itself from mathematics in its
important investigations on the finest structure of
matter.

The fundamental belief of every philosopher
that the world can be consistently com-
prehended by human reason is now open to
doubt.

All this inclines some of us to greater scepticism in
more general questions as well. The fundamental be-
lief of every philosopher that the world can be consis-
tently comprehended by human reason is now open to
doubt. Beyond the ignorabimus, he no longer strongly
believes in man’s ability to bring together different
insights in a satisfying harmony. To be sure, this is
not an entirely original attitude. It reminds one of the
view taken by the late Eleatic philosophers at the time
of the foundational crisis in ancient Greece.

This scepticism gives rise to certain resignation, a
kind of distrust in man’s intellectual power. But quite
apart from the modern developments just described,
this attitude has always characterized the greatest
mathematicians. For even the greatest researchers
learn the sad truth that while they can discern an in-
finity of new and beautiful problems, they can only
tackle the least of them. Newton put it in these words:
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I do not know what I may appear to the world; but to
myself I seem to have been only like a boy playing on the
seashore, and diverting myself in now and then finding a
smoother pebble or a prettier shell than ordinary, whilst the
great ocean of truth lay all undiscovered before me.

I should like further to comment on why it is that
productive involvement must lead to just such resig-
nation. To this end, we must look at the growth of the
individual mathematical disciplines. The destinies of
different branches vary greatly. Consider, for exam-
ple, projective geometry, which may well have been
treated for the first time by Euclid in his lost work on
porisms, and was extensively developed—for the most
part by Pappus of Alexandria—in the third century
A.D. It deals with the remarkable and beautiful prop-
erties of figures that remain invariant under projec-
tion. But in antiquity the problem was not formulated
in full generality. After the Renaissance, when interest

One could almost say that after two thousand
years of work the solution of problems in
projective geometry was virtually as trivial
for a professional mathematician as the solu-
tion of problems of counting with whole num-
bers for a 10-year-old child.

in projective geometry was inspired by the use of
perspective in painting, the problem was first treated
in typically modern fashion by the 17th century
French geometer Desargues (an architect by profes-
sion). Projective geometry continued to flourish
and—as a result of a number of brilliant works by
French, and later also German mathematicians—was
brought virtually to conclusion in the 19th century: It
was built up along canonical lines, and its problems
were reduced to algebraic problems over which one
had complete mastery. One could almost say that after
two thousand years of work the solution of problems
in projective geometry was virtually as trivial for a
professional mathematician as the solution of prob-
lems of counting with whole numbers for a 10-year-
old child.

Now consider another branch of mathematics:
number theory, of which I said earlier that its first
results date back to an ancient past. A brilliant array of
men, such as Euclid, Diophantus, Fermat, Euler, La-
grange, Gauss, and Dirichlet, have obtained results
that will forever delight all mathematicians. But al-
most all of these problems are isolated problems, and
other very old, simple-looking problems remained
unsolved. For example, Euclid investigated perfect
numbers—that is, numbers equal to the sum of their
divisors, exemplified, say, by 6 =1 + 2 + 3 or 28 =
1+ 2+ 4+ 7 + 14—and proved a remarkable result
about such numbers. To this day, in spite of great



efforts, this result is virtually all we know about per-
fect numbers. Whether there are infinitely many such
numbers (we know just 12), and whether there exist
odd perfect numbers are questions we cannot even

tackle.
As the last case we consider analysis situs or topol-

ogy, the branch of mathematics that deals with the
most general properties of the shape of a figure. It
was developed only in the 19th century, and largely
through the work of the Goéttingen mathematician
Riemann, who identified the topological core of many
function-theoretic questions. At the end of the 19th
century Henri Poincaré gave topology another strong
impulse. At the present time there appear very many
topological papers, but when it comes to fundamental
problems we have hardly gone beyond Poincaré or,
strictly speaking, Riemann—this in spite of the fact
that such progress would be of great significance for,
among other things, the theory of algebraic functions
of two variables. Here the failure is not due to the fact
that—as in number theory—the problems cannot be
tackled, but to the fact that they are so intricate that
the power of the human intellect, the ability to imag-
ine different things at the same time, is not sufficient
for mastery.

I could consider many disciplines from this
viewpoint but I think that the above examples illus-
trate the three most important types: the discipline
that reduces to triviality; the one that is forever hin-
dered in its development and beset on all sides with

will begin. This is the case, for example, in projective
geometry, which could not advance further by means
of the methods and ideas of antiquity, but entered an
era of new development through the brilliant ideas of
Desargues and, later, the mathematical power of the
geometers of the first half of the 19th century, before
reaching the conclusion described above. Again,
hitherto unassailable problems of number theory are

The progress of our discipline depends not on
mass efforts, not on a flood of papers filled
with investigations of insignificant special
cases or generalizations, but on individual
creative achievements.

The last type inspires the feeling that mathe-
matics develops like a tree. There is a limit to
the growth of a tree, for the ability of the tree
to transport nourishing substances from the
earth to the crown does not extend to arbi-
trary heights.

seemingly unassailable problems; and the one that—
after a longer or shorter period of development—is
brought to a halt by the complexity and difficulty of its
problems. The last type inspires the feeling that math-
ematics develops like a tree. There is a limit to the
growth of a tree, for the ability of the tree to transport
nourishing substances from the earth to the crown
does not extend to arbitrary heights. Similarly the
continued development of a branch of mathematics
require connection with the ground of intuition, and
man’s limited intellectual power sets a boundary on
the distance between abstraction and intuition. No
development is possible beyond this bound. But
modern mathematics is certainly not dead, and some-
one may, and (we hope) will, so simplify processes in,
say, topology—that is, provide so much shorter a con-
nection with the ground—that a new development

being solved as a result of the discovery of new con-
nections. We must not be hampered by resignation.
On the contrary, we must realize that the progress of
science depends not on comfortable plodding but on
perceiving and forming new ideas. The progress of
our discipline depends not on mass efforts, not on a
flood of papers filled with investigations of insignifi-
cant special cases or generalizations, but on individual
creative achievements. Such achievements can hardly
come about in a factory-like setting. But if the
mathematician complains that modern development
has organized even the pursuit of his own science,
then he must, above all, tell himself: mea maxima
culpa. For it is through mathematics that man’s con-
structive power, that brought forth the age of technol-
ogy, first blossomed. And when he is gripped by de-
spair at the sight of the evil he has brought about he is
saved, for the third time, by resignation. He is aware
of the power of man’s thought that can penetrate to the
limits of the macrocosm and microcosm and back into
the depths of time; but he also knows that this very
same human thought is powerless to shape fate, that it
is just a small force in a wondrously contorted devel-
opment, a force that works blindly and has no access
to the riddles of the future. Such humility induces
profound religiosity in many mathematicians. In spite
of the boldness and acuteness of their speculations, it
was especially marked in Pascal, Newton, Euler,
Cauchy, Gauss, and Riemann. The trait of modesty is
also found in Euclid, the oldest mathematician of
whose character we have a description. It is said of
Euclid that he was distinguished by mildness and
good will to all, and especially to those who could in
any way enrich mathematics; and though he might be
stern, he was not in the least quarrelsome, and had no
desire to claim anything for himself.

I wish to say that, contrary to a widespread notion,
the mathematician is not an otherworldly eccentric; at
any rate, he is not eccentric because of his science. He
stands between areas of study, especially between the
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... contrary to a widespread notion, the
mathematician is not an otherworldly eccen-
tric; at any rate; he is not eccentric because of
his science.

humanities and the natural sciences, spheres that un-
fortunately are disjoint in our country. His method is
only a particularly distinct version of the general sci-
entific method. In view of the importance of the prin-
ciple of the excluded middle, it is related to the juridi-
cal method. The object of his research is more spiri-
tual than that of the natural scientist and more sentient
than that of the humanist. He is linked to the latter by
the whole history of his science, and this has intimate
connections with the history of philosophy. Connec-
tion with the natural sciences goes beyond the applica-
tions that permeate all the exact natural sciences. The
mathematician knows that he owes to the natural sci-
ences his most important stimulations. Thus the
method of infinitesimals that so inspired L'Hospital,
and became a pillar of the infinitesimal calculus, arose
out of Galileo’s arduous research on the decomposi-
tion of the motion of a projectile into motions due to
inertia and gravity respectively. Or we remember pe-
riodic series, rightly named for the physicist Fourier
and directly related to all the important extensions of
analysis in the 19th century.

We have now reached the end. I dare not decide
whether the topic of my lecture was correctly chosen,
that is, whether the mathematician has a certain spir-
itual uniqueness or should be included as a mere vari-
ety without essential distinction in a much larger
class. At any rate, let me conclude with a summary of
the image obtained in the course of our consid-
erations. At times the mathematician has the passion
of a poet or a conqueror, the rigor of his arguments is
that of a responsible statesman or, more simply, of a
concerned father, and his tolerance and resignation
are those of an old sage; he is revolutionary and con-
servative, sceptical and yet faithfully optimistic. These
qualities do sometimes appear together in one person,
but if you find them somewhat contradictory re-
member what C. F. Mayer makes Ulrich von Hutten
say, and what the mathematician may claim for him-
self:

Ich bin kein ausgekliigelt Buch,

Ich bin ein Mensch mit seinem Widerpruch.

(I am not a contrived book, but a human being with all
its contradictions).

Abe Shenitzer

Department of Mathematics
York University
Downsview, Ontario
Canada M3] 1P3

26 THE MATHEMATICAL INTELLIGENCER VOL. 5, NO. 2, 1983

Smiles
Edited by Gary Cornell

Erdés once remarked that every theorem has at
least one “right’” proof. This proof would be suf-
ficiently elegant so as to strike some responsive chord,
while remaining short enough to be easily compre-
hensible. It might even force a smile. This column will
try to present such proofs. It will appear irregularly; as
often as material presents itself.

Anyone knowing a proof of a result that fulfills the
above (admittedly vague) criteria is urged to submit
it to:

Gary Cornell

Department of Mathematics
University of Connecticut
Storrs, Connecticut 06268

Credit for the following proof is uncertain—it is pos-
sibly due to Erdos. This particular version was trans-
mitted to The Intelligencer by Marty Isaacs.

THM (Sylvester). Let S be a finite set of points in a
plane such that every line which meets two points of
S, meets a third point. Then S is colinear.

Proof. If not, let L be the set of all lines determined by
pairs of points of S. Some point of S is not on some
line of L so choose X€S and ¢€L with X not on ¢ and
the distance from X to ¢ as small as possible. (By fi-
niteness of S and L.)

+x

0’_] 2 4

A B C

L

R 4

Now ¢ contains two, hence three points of S, say A, B,
C. Two of these must lie on the same side of the foot of
the perpendicular from X to ¢. (A and B in the dia-
gram. We allow one of these to be the foot of the per-
pendicular.) Now in the diagram, the distance from
point B to line AX is less than the distance from X to ¢.
This is a contradiction.



