
Polya's Craft 
of Discovery 

"My mind was struck by a flash of lightning in which its de-
sire was fulfilled ." 

Dante, Paradiso, Canto XXXIII 
Quoted by G. P6lya 

GEORGE POLYA (1888-) has had a scientific 
career extending more than seven decades. A 
brilliant mathematician who has made funda-
mental contributions in many fields, P6lya has 

also been a brilliant teacher, a teacher's teacher, and an ex-
positor. P6lya believes that there is a craft of discovery. He 
believes that the ability to discover and the ability to invent 
can be enhanced by skillful teaching which alerts the stu-
dent to the principles of discovery and which gives him an 
opportunity to practise these principles. 

In a series of remarkable books of great richness, the 
first of which was published in 1945, P6lya has crystallized 
these principles of discovery and invention out of his vast 
experience, and has shared them with us both in precept 
and in example. These books are a treasure-trove of strat-
egy, know-how, rules of thumb, good advice, anecdote, 
mathematical history, together with problem after prob-
lem at all levels and all of unusual mathematical interest. 
P6lya places a global plan for "How to Solve It" in the end-
papers of his book of that name: 

HOW TO SOLVE IT 
First: you have to understand the problem. 
Second: find the connection between the data and the 

unknown. You may be obliged to consider auxiliary prob-
lems if an immediate connection cannot be found. You 
should obtain eventually a plan of the solution. 

Third: Carry out your plan. 
Fourth: Examine the solution obtained. 
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Teaching and Learning 

These precepts are then broken down to "molecular" 
level on the opposite endpaper. There, individual strat-
egies are suggested which might be called into play at 
appropriate moments, such as 

If you cannot solve the proposed problem, look around for 
an appropriate related problem 
Work backwards 
Work forwards 
Narrow the condition 
Widen the condition 
Seek a counterexample 
Guess and test 
Divide and conquer 
Change the conceptual mode 

Each of these heuristic principles is amplified by numerous 
appropriate examples. 

Subsequent investigators have carried Polya's ideas for-
ward in a number of ways. A. H. Schoenfeld has made an 
interesting tabulation of the most frequently used heuristic 
principles in college-level mathematics. We have appended 
it here. 

FREQUENTLY USED HEURISTICS* 

Analysis 

1) DRAW A DIAGRAM if at all possible. 
2) EXAMINE SPECIAL CASES: 

a) Choose special values to exemplify the problem and get a 
"feel" for it. 

b) Examine limiting cases to explore the range of possibili-
ties. 

c) Set any integer parameters equal to 1, 2, 3, ... , in se-
quence, and look for an inductive pattern. 

3) TRY TO SIMPLIFY THE PROBLEM by 
a) exploiting symmetry, or 
b) "Without Loss of Generality" arguments (including 

scaling) 

*From: A. H. Schoenfeld 
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Polya's Craft of Discovery 

Exploration 
1) CONSIDER ESSENTIALLY EQUIVALENT PROBLEMS: 

a) Replacing conditions by equivalent ones. 
b) Re-combining the elements of the problem in different 

ways. 
c) Introduce auxiliary elements. 
d) Re-formulate the problem by 

i) change of perspective or notation 
ii) considering argument by contradiction or contraposi-

tive 
iii) assuming you have a solution, and determining its 

properties 

2) CONSIDER SLIGHTLY MODIFIED PROBLEMS: 
a) Choose subgoals (obtain partial fulfillment of the condi-

tions) 
b) Relax a condition and then try to re-impose it. 
c) Decompose the domain of the problem and work on it 

case by case. 

3) CONSIDER BROADLY MODIFIED PROBLEMS: 
a) Construct an analogous problem with fewer variables. 
b) Hold all but one variable fixed to determine that variable's 

impact. 
c) Try to exploit any related problems which have similar 

i) form 
ii) "givens" 

iii) conclusions. 
Remember: when dealing with easier related problems, you 
should try to exploit both the RESULT and the METHOD OF 
SOLUTION on the given problem. 

Verifying your solution 
1) DOES YOUR SOLUTION PASS THESE SPECIFIC 
TESTS: 

a) Does it use all the pertinent data? 
b) Does it conform to reasonable estimates or predictions? 
c) Does it withstand tests of symmetry, dimension analysis, 

or scaling? 
2) DOES IT PASS THESE GENERAL TESTS? 

a) Can it be obtained differently? 
b) Can it be substantiated by special cases? 
c) Can it be reduced to known results? 
d) Can it be used to generate something you know? 
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Fig. 10.1. Three 
circles through 
one point. 

Teaching and Learning 

To give the flavor of Polya's thinking and writing in a 
very beautiful but subtle case, a case that involves a change 
in the conceptual mode, I shall quote at length from his 
Mathematical Discovery (vol. II, pp. 54 ff): 

Example 
I take the liberty of trying a little experiment with the 

reader. I shall state a simple but not too commonplace the-
orem of geometry, and then I shall try to reconstruct the 
sequence of ideas that led to its proof. I shall proceed 
slowly, very slowly, revealing one clue after the other, and 
revealing each clue gradually. I think that before I have 
finished the whole story, the reader will seize the main idea 
(unless there is some special hampering circumstance). But 
this main idea is rather unexpected, and so the reader may 
experience the pleasure of a little discovery. 

A. If three circles having the same radius pass through a point, 
the circle through their other three points of intersection also has 
the same radius. 

This is the theorem that we have to prove. The statement 
is short and clear, but does not show the details distinctly 
enough. If we draw a figure (Fig. 10.1) and introduce suitable 
notation, we arrive at the following more explicit restate-
ment: 

B: Three circles k, l, m have the same radius r and pass through 
the same point 0. Moreover, land m intersect in the point A, m 
and kin B, k and lin C. Then the circle e through A, B, C has also 
the radius r. 

Figure 10.1 exhibits the four circles k, l, m, and e and 
their four points of intersection A, B, C, and 0. The figure 
is apt to be unsatisfactory, however, for it is not simple, and 
it is still incomplete; something seems to be missing; we 
failed to take into account something essential, it seems. 

We are dealing with circles. What is a circle? A circle is 
determined by center and radius; all its points have the 
same distance, measured by the length of the radius, from 
the center. We failed to introduce the common radius r, 
and so we failed to take into account an essential part of the hy-
pothesis. Let us, therefore, introduce the centers, K of k, L of 
l, and M of m. Where should we exhibit the radius r? There 
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Polya's Craft of Discovery 

seems to be no reason to treat any one of the three given 
circles k, l, and m or any one of the three points of intersec-
tion A, B, and C better than the others. We are prompted to 
connect all three centers with all the points of intersection 
of the respective circle: K with B, C, and 0, and so forth. 

The resulting figure (Fig. 1 0.2) is disconcertingly 
crowded. There are so many lines, straight and circular, 
that we have much trouble in "seeing" the figure satisfacto-
rily; it "will not stand still." It resembles certain drawings in 
old-fashioned magazines. The drawing is ambiguous on 
purpose; it presents a certain figure if you look at it in the 
usual way, but if you turn it to a certain position and look at 
it in a certain peculiar way, suddenly another figure flashes 
on you, suggesting some more or less witty comment on the 
first. Can you recognize in our puzzling figure, overladen 
with straight lines and circles, a second figure that makes 
sense? 

We may hit in a flash on the right figure hidden in our 
overladen drawing, or we may recognize it gradually. We 
may be led to it by the effort to solve the proposed prob-
lem, or by some secondary, unessential circumstance. For 
instance, when we are about to redraw our unsatisfactory 
figure, we may observe that the whole figure is determined 
by its rectilinear part (Fig. 10.3 ). 

This observation seems to be significant. It certainly sim-
plifies the geometric picture, and it possibly improves the 
logical situation. It leads us to restate our theorem in the 
following form. 

C. If the nine segments 

KO, 
LC, 
MB, 

KG, 
LO, 
MA, 

KB, 
LA, 
MO, 

are all equal to r, there exists a pointE such that the three segments 

E A, E B, EC 

are also equal to r. 
This statement directs our attention to Fig. 1 0.3. This 

figure is attractive; it reminds us of something familiar. (Of 
what?) 
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Fig. 10.2. Too 
crowded. 
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Fig. 10.3. It re-
minds you -of 
what? 



Fig. 10.4. Of 
course! 

Teaching and Learning 

Of course, certain quadrilaterals in Fig. 10.3, such as. 
OLAM have, by hypothesis, four equal sides, they are 
rhombi. A rhombus is a familiar object; having recognized 
it, we can "see" the figure better. (Of what does the whole 
figure remind us?) 

Opposite sides of a rhombus are parallel. Insisting on 
this remark, we realize that the 9 segments of Fig. 10.3 are 
of three kinds; segments of the same kind, such as AL, MO, 
and BK, are parallel to each other. (Of what does the figure 
remind us now?) 

We should not forget the conclusion that we are re-
quired to attain. Let us assume that the conclusion is true. 
Introducing into the figure the center E or the circle e, and 
its three radii ending in A, B, and C, we obtain (supposedly) 
still more rhombi, still more parallel segments; see Fig. 
10.4. (Of what does the whole figure remind us now?) 

Of course, Fig. l 0.4 is the projection of the 12 edges of a 
parallelepiped having the particularity that the projection 
of all edges are of equal length. 

Figure l 0.3 is the projection of a "nontransparent" 
parallelepiped; we see only 3 faces, 7 vertices, and 9 edges; 
3 faces, l vertex, and 3 edges are invisible in this figure. 
Figure 10.3 is just a part of Fig. 1 0.4, but this part defines 
the whole figure. If the parallelepiped and the direction of 
projection are so chosen that the projections of the 9 edges 
represented in Fig. 10.3 are all equal to r (as they should 
be, by hypothesis), the projections of the 3 remaining edges 
must be equal tor. These 3 lines of length rare issued from 
the projection of the 8th, the invisible vertex, and this 
projection E is the center of a circle passing through the 
points A, B, and C, the radius of which is r. 

Our theorem is proved, and proved by a surprising, ar-
tistic conception of a plane figure as the projection of a 
solid. 

(The proof uses notions of solid geometry. I hope that 
this is not a great wrong, but if so it is easily redressed. Now 
that we can characterize the situation of the center E so 
simply, it is easy to examine the lengths EA, EB, and EC in-
dependently of any solid geometry. Yet we shall not insist 
on this point here.) 

This is very beautiful, but one wonders. Is this the "light 
that breaks forth like the morning," the flash in which de-
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The Creation of New Mathematics 

sire is fulfilled? Or is it merely the wisdom of the Monday 
morning quarterback? Do these ideas work out in the class-
room? Followups of attempts to reduce P6lya's program to 
practical pedagogics are difficult to interpret. There is 
more to teaching, apparently, than a good idea from a 
master. 

Further Readings. See Bibliography 
I. Goldstein and S. Papert; E. B. Hunt; A. Koestler [1964]; J. Kestin; G. 

Polya [1945], [1954], [1962]; A. H. Schoenfeld; J. R. Slagle 

The Creation of 
New Mathematics: 
An Application of the 
Lakatos Heuristic 

I N PROOFS AND REFUTATIONS, Imre Lakatos pre-
sents a picture of the "logic of mathematical discov-
ery." A teacher and his class are studying the famous 
Euler-Descartes formula for polyhedra 

V- E + F = 2. 

In this formula V is the number of vertices of a polyhe-
dron, E, the number of its edges, and F, the number of its 
faces. Among the familiar polyhedra, these quantities take 
the following values: Leonhard Euler 

1707 - 1783 v E F 

tetrahedron 4 6 4 

(Egyptian) 
pyramid 5 8 5 

cube 8 12 6 

octahedron 6 12 8 

(See also Chapter 7, Lakatos and the Philosophy of Dubita-
bility.) 
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